198 research outputs found

    13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.)

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was operated at the high-alpine site Jungfraujoch in order to characterize the hygroscopic diameter growth factors of the free tropospheric Aitken and accumulation mode aerosol. More than ~5000 h of valid data were collected for the dry diameters <i>D</i><sub>0</sub> = 35, 50, 75, 110, 165, and 265 nm during the 13-month measurement period from 1 May 2008 through 31 May 2009. No distinct seasonal variability of the hygroscopic properties was observed. Annual mean hygroscopic diameter growth factors (<i>D</i>/<i>D</i><sub>0</sub>) at 90% relative humidity were found to be 1.34, 1.43, and 1.46 for <i>D</i><sub>0</sub> = 50, 110, and 265 nm, respectively. This size dependence can largely be attributed to the Kelvin effect because corresponding values of the hygroscopicity parameter κ are nearly independent of size. The mean hygroscopicity of the Aitken and accumulation mode aerosol at the free tropospheric site Jungfraujoch was found to be κ≈0.24 with little variability throughout the year. <br><br> The impact of Saharan dust events, a frequent phenomenon at the Jungfraujoch, on aerosol hygroscopicity was shown to be negligible for <i>D</i><sub>0</sub><265 nm. Thermally driven injections of planetary boundary layer (PBL) air, particularly observed in the early afternoon of summer days with convective anticyclonic weather conditions, lead to a decrease of aerosol hygroscopicity. However, the effect of PBL influence is not seen in the annual mean hygroscopicity data because the effect is small and those conditions (weather class, season and time of day) with PBL influence are relatively rare. <br><br> Aerosol hygroscopicity was found to be virtually independent of synoptic wind direction during advective weather situations, i.e. when horizontal motion of the atmosphere dominates over thermally driven convection. This indicates that the hygroscopic behavior of the aerosol observed at the Jungfraujoch can be considered representative of the lower free troposphere on at least a regional if not continental scale

    A touch and pair system for battery-free 802.15.4/ZigBee home automation networks

    Get PDF
    In this paper, 2 problems affecting the acceptance of wireless devices by a wider public are introduced, and possible solutions are suggested. The first obstacle is linked to the necessity of changing the batteries of autonomous wireless nodes after. Although this problem can be solved to a certain extent by using battery-less devices, the energy need of flexible protocols such as ZigBee increases the complexity of such a device autonomously joining a network (including association and binding). A solution based on RFID components that allow the transfer of pairing information using a “Touch and Pair” system is presented. It is shown that a consumer device such as an iPod/iPhone can be modified to serve as a user friendly pairing device. Using ultra low power components, battery-less switches sending ZigBee compatible frames are built. Key network parameters can be transferred from the iPod/iPhone to the switch or other endpoints and thus allow a fast and simple configuration of battery-less elements on the network

    Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area

    Get PDF
    Gas and aerosol samples were taken using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to ion chromatography (IC) in the city of Zurich, Switzerland from August to September 2002 and in March 2003. Major water soluble inorganic ions; nitrate, sulfate, and nitrite were analyzed online with a time resolution of two hours for the gas and aerosol phase. The fraction of water soluble inorganic anions in PM10 varied from 15% in August to about 38% in March. Seasonal and diurnal variations of nitrate in the gas and aerosol phase were observed with more than 50% of the total nitrate in the gas phase during August and more than 80% of nitrate in the aerosol phase during March exceeding the concentration of sulfate by a factor of 2. Aerosol sulfate, on the other hand, did not show significant variability with season. However, in the gas phase, the SO<sub>2</sub> concentration was 6.5 times higher in winter than in summer. Nitrous acid (HONO) also showed a diurnal variation in both the gas and aerosol phase with the lowest concentration (0.2&ndash;0.6 &micro;g/m<sup>3</sup>) in the afternoon. The primary pollutants, NO, CO and SO<sub>2</sub> mixing ratios were often at their highest between 04:00&ndash;10:00&nbsp;local time due to the build up of fresh vehicle emission under a nocturnal inversion

    Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Get PDF
    Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (&amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt; at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors &lt;i&gt;f&lt;/i&gt;(RH)=&amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(RH)/&amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the &lt;i&gt;f&lt;/i&gt;(RH) is available so far. At this site, &lt;i&gt;f&lt;/i&gt;(RH=85%) varied between 1.2 and 3.3. Measured &lt;i&gt;f&lt;/i&gt;(RH) agreed well with &lt;i&gt;f&lt;/i&gt;(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good &lt;i&gt;f&lt;/i&gt;(RH) predictions at RH&amp;lt;85% were also obtained with a simplified model, which uses the Ångström exponent of &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol

    Information content and aerosol property retrieval potential for different types of in situ polar nephelometer data

    Get PDF
    Polar nephelometers are in situ instruments used to measure the angular distribution of light scattered by aerosol particles. These types of measurements contain substantial information about the properties of the aerosol being probed (e.g. concentrations, sizes, refractive indices, shape parameters), which can be retrieved through inversion algorithms. The aerosol property retrieval potential (i.e. information content) of a given set of measurements depends on the spectral, polarimetric, and angular characteristics of the polar nephelometer that was used to acquire the measurements. To explore this issue quantitatively, we applied Bayesian information content analysis and calculated the metric degrees of freedom for signal (DOFS) for a range of simulated polar nephelometer instrument configurations, aerosol models and test cases, and assumed levels of prior knowledge about the variances of specific aerosol properties. Assuming a low level of prior knowledge consistent with an unconstrained ambient/field measurement setting, we demonstrate that even very basic polar nephelometers (single wavelength, no polarization capability) will provide informative measurements with a very high retrieval potential for the size distribution and refractive index state parameters describing simple unimodal, spherical test aerosols. As expected, assuming a higher level of prior knowledge consistent with well-constrained laboratory applications leads to a reduction in potential for information gain via performing the polarimetric measurement. Nevertheless, we show that in this situation polar nephelometers can still provide informative measurements: e.g. it can be possible to retrieve the imaginary part of the refractive index with high accuracy if the laboratory setting makes it possible to keep the probed aerosol sample simple. The analysis based on a high level of prior knowledge also allows us to better assess the impact of different polar nephelometer instrument design features in a consistent manner for retrieved aerosol parameters. The results indicate that the addition of multi-wavelength and/or polarimetric measurement capabilities always leads to an increase in information content, although in some cases the increase is negligible, e.g. when adding a fourth, near-IR measurement wavelength for the retrieval of unimodal size distribution parameters or if the added polarization component has high measurement uncertainty. By considering a more complex bimodal, non-spherical-aerosol model, we demonstrate that performing more comprehensive spectral and/or polarimetric measurements leads to very large benefits in terms of the achieved information content. We also investigated the impact of angular truncation (i.e. the loss of measurement information at certain scattering angles) on information content. Truncation at extreme angles (i.e. in the near-forward or near-backward directions) results in substantial decreases in information content for coarse-aerosol test cases. However for fine-aerosol test cases, the sensitivity of DOFS to extreme-angle truncation is noticeably smaller and can be further reduced by performing more comprehensive measurements. Side angle truncation has very little effect on information content for both the fine and coarse test cases. Furthermore, we demonstrate that increasing the number of angular measurements generally increases the information content. However, above a certain number of angular measurements (∼20–40) the observed increases in DOFS plateau out. Finally, we demonstrate that the specific placement of angular measurements within a nephelometer can have a large impact on information content. As a proof of concept, we show that a reductive greedy algorithm based on the DOFS metric can be used to find optimal angular configurations for given target aerosols and applications.</p

    Information content and aerosol property retrieval potential for different types of in situ polar nephelometer data

    Get PDF
    Polar nephelometers are in situ instruments used to measure the angular distribution of light scattered by aerosol particles. These type of measurements contain substantial information about the properties of the aerosol being probed (e.g. concentrations, sizes, refractive indices, shape parameters), which can be retrieved through inversion algorithms. The aerosol property retrieval potential (i.e., information content) of a given set of measurements depends on the spectral, polarimetric and angular characteristics of the polar nephelometer that was used to acquire it. To explore this issue quantitatively, we applied Bayesian information content analysis and calculated the metric Degrees of Freedom for Signal (DOFS) for a range of simulated polar nephelometer instrument configurations, aerosol models and test cases, and assumed levels of prior knowledge about the variances of specific aerosol properties. Assuming a low level of prior knowledge consistent with an unconstrained ambient/field measurement setting, we demonstrate that even very basic polar nephelometers (single wavelength, no polarization capability) will provide informative measurements with very high retrieval potential for the size distribution and refractive index state parameters describing simple unimodal, spherical test aerosols. As expected, assuming a higher level of prior knowledge consistent with well constrained laboratory applications leads to a reduction in potential for information gain via performing the polarimetric measurement. This analysis allows us to better assess the impact of different polar nephelometer instrument design features in a consistent manner for retrieved aerosol parameters. The results indicate that the addition of multi-wavelength and/or polarimetric measurement capabilities always leads to an increase in information content, although in some cases the increase is negligible: e.g. when adding a fourth, near-IR measurement wavelength for the retrieval of unimodal size distribution parameters, or if the added polarization component has high measurement uncertainty. By considering a more complex bimodal, non-spherical aerosol model, we demonstrate that performing the more comprehensive spectral and/or polarimetric measurements leads to very large benefits in terms of the achieved information content. We also investigated the impact of angular truncation (i.e., the loss of measurement information at certain scattering angles) on information content. Truncation at extreme angles (i.e., in the near-forward or &ndash;backward directions) results in substantial decreases in information content for coarse aerosol test cases. However for fine aerosol test cases, the sensitivity of DOFS to extreme angle truncation is noticeably smaller and can be further reduced by performing more comprehensive measurements. Side-angle truncation has very little effect on information content for both the fine and coarse test cases. Furthermore, we demonstrate that increasing the number of angular measurements generally increases the information content. However, above a certain number of angular measurements (~20&ndash;40) the observed increases in DOFS plateau out. Finally, we demonstrate that the specific placement of angular measurements within a nephelometer can have a large impact on information content. As a proof-of-concept, we show that a reductive greedy algorithm based on the DOFS metric can be used to find optimal angular configurations for given target aerosols and applications.</p

    From Monolith to Microservices: A Classification of Refactoring Approaches

    Full text link
    While the recently emerged Microservices architectural style is widely discussed in literature, it is difficult to find clear guidance on the process of refactoring legacy applications. The importance of the topic is underpinned by high costs and effort of a refactoring process which has several other implications, e.g. overall processes (DevOps) and team structure. Software architects facing this challenge are in need of selecting an appropriate strategy and refactoring technique. One of the most discussed aspects in this context is finding the right service granularity to fully leverage the advantages of a Microservices architecture. This study first discusses the notion of architectural refactoring and subsequently compares 10 existing refactoring approaches recently proposed in academic literature. The approaches are classified by the underlying decomposition technique and visually presented in the form of a decision guide for quick reference. The review yielded a variety of strategies to break down a monolithic application into independent services. With one exception, most approaches are only applicable under certain conditions. Further concerns are the significant amount of input data some approaches require as well as limited or prototypical tool support.Comment: 13 pages, 4 tables, 2 figures, Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment, First International Workshop, DEVOPS 2018, Chateau de Villebrumier, France, March 5-6, 2018, Revised Selected Paper

    Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    Get PDF
    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50–800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region

    Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017

    Get PDF
    Primary ice formation in mixed-phase clouds is initiated by a minute subset of the ambient aerosol population, called ice-nucleating particles (INPs). The knowledge about their atmospheric concentration, composition, and source in cloud-relevant environments is still limited. During the 2017 joint INUIT/CLACE (Ice Nuclei research UnIT/CLoud–Aerosol Characterization Experiment) field campaign, observations of INPs as well as of aerosol physical and chemical properties were performed, complemented by source region modeling. This aimed at investigating the nature and sources of INPs. The campaign took place at the High-Altitude Research Station Jungfraujoch (JFJ), a location where mixed-phase clouds frequently occur. Due to its altitude of 3580 m a.s.l., the station is usually located in the lower free troposphere, but it can also receive air masses from terrestrial and marine sources via long-range transport. INP concentrations were quasi-continuously detected with the Horizontal Ice Nucleation Chamber (HINC) under conditions representing the formation of mixed-phase clouds at −31 ∘C. The INP measurements were performed in parallel to aerosol measurements from two single-particle mass spectrometers, the Aircraft-based Laser ABlation Aerosol MAss Spectrometer (ALABAMA) and the laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The chemical identity of INPs is inferred by correlating the time series of ion signals measured by the mass spectrometers with the time series of INP measurements. Moreover, our results are complemented by the direct analysis of ice particle residuals (IPRs) by using an ice-selective inlet (Ice-CVI) coupled with the ALABAMA. Mineral dust particles and aged sea spray particles showed the highest correlations with the INP time series. Their role as INPs is further supported by source emission sensitivity analysis using atmospheric transport modeling, which confirmed that air masses were advected from the Sahara and marine environments during times of elevated INP concentrations and ice-active surface site densities. Indeed, the IPR analysis showed that, by number, mineral dust particles dominated the IPR composition (∼58 %), and biological and metallic particles are also found to a smaller extent (∼10 % each). Sea spray particles are also found as IPRs (17 %), and their fraction in the IPRs strongly varied according to the increased presence of small IPRs, which is likely due to an impact from secondary ice crystal formation. This study shows the capability of combining INP concentration measurements with chemical characterization of aerosol particles using single-particle mass spectrometry, source region modeling, and analysis of ice residuals in an environment directly relevant for mixed-phase cloud formation.</p
    corecore