31 research outputs found

    Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources.

    Get PDF
    The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO\u27s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes

    Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens.

    Get PDF
    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence

    An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and comparison of their abilities to cause spot blotch on barley

    Get PDF
    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus), the causal agent of common root rot (CRR) and foliar spot blotch (SB) diseases in barley and wheat, is an economically important fungal pathogen worldwide. However, the relationship between these two diseases is poorly understood. Differences within Australian B. sorokiniana populations were revealed by cluster analysis of amplified fragment length polymorphisms in genomic DNA of 48 B. sorokiniana isolates collected from the northern grain-growing region of Australia. Isolates collected from SB infections clustered apart from isolates collected from CRR infections. A subset of 31 B. sorokiniana isolates was assessed for their abilities to cause SB infections on barley leaves using a differential set of 15 barley genotypes and three other cereal species. The pathogen samples included 14 isolates from CRR infections of either wheat or barley and 14 isolates from SB infections of barley. Phenotypic experiments revealed that isolates of B. sorokiniana collected from barley SB infections showed a high level of pathogenic variability across the differential set. In contrast, isolates from CRR infections produced significantly less SB disease on inoculated barley leaves. Cluster analysis of the phenotypic infection response scores grouped isolates into three pathogenicity clusters demonstrating low, intermediate or high pathogenicity. The results of this study suggest divergence within Australian populations of B. sorokiniana in relation to host tissue specificity

    Education resources of the National Center for Biotechnology Information

    No full text
    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page (www.ncbi.nlm.nih.gov/Education/). These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube
    corecore