162 research outputs found

    How mHealth can facilitate collaboration in diabetes care: qualitative analysis of codesign workshops

    Get PDF
    Background - Individuals with diabetes are using mobile health (mHealth) to track their self-management. However, individuals can understand even more about their diabetes by sharing these patient-gathered data (PGD) with health professionals. We conducted experience-based co-design (EBCD) workshops, with the aim of gathering end-users’ needs and expectations for a PGD-sharing system. Methods - N = 15 participants provided feedback about their experiences and needs in diabetes care and expectations for sharing PGD. The first workshop (2017) included patients with Type 2 Diabetes (T2D) (n = 4) and general practitioners (GPs) (n = 3). The second workshop (2018) included patients with Type 1 Diabetes (T1D) (n = 5), diabetes specialists (n = 2) and a nurse. The workshops involved two sessions: separate morning sessions for patients and healthcare providers (HCPs), and afternoon session for all participants. Discussion guides included questions about end-users’ perceptions of mHealth and expectations for a data-sharing system. Activities included brainstorming and designing paper-prototypes. Workshops were audio recorded, transcribed and translated from Norwegian to English. An abductive approach to thematic analysis was taken. Results Emergent themes were mHealth technologies’ impacts on end-users, and functionalities of a data-sharing system. Within these themes, similarities and differences between those with T1D and T2D, and between HCPs, were revealed. Patients and providers agreed that HCPs could use PGD to provide more concrete self-management recommendations. Participants’ paper-prototypes revealed which data types should be gathered and displayed during consultations, and how this could facilitate shared-decision making. Conclusion The diverse and differentiated results suggests the need for flexible and tailorable systems that allow patients and providers to review summaries, with the option to explore details, and identify an individual’s challenges, together. Participants’ feedback revealed that both patients and HCPs acknowledge that for mHealth integration to be successful, not only must the technology be validated but feasible changes throughout the healthcare education and practice must be addressed. Only then can both sides be adequately prepared for mHealth data-sharing in diabetes consultations. Subsequently, the design and performance of the joint workshop sessions demonstrated that involving both participant groups together led to efficient and concrete discussions about realistic solutions and limitations of sharing mHealth data in consultations

    Correction of moisture effects on near infrared calibration for the analysis of phenol content in eucalyptus wood extracts

    Get PDF
    Les méthodes basées sur la spectroscopie proche infrarouge pour estimer les propriétés du bois sont sensibles aux variations des paramètres physiques (température, granulométrie. . . ). Le bois étant un matériau hygroscopique sensible, l'influence de l'humidité sur l'absorbance et l'étalonnage proche infrarouge a été étudiée afin de mieux considérer les possibilités d'applications dans des conditions réelles.Un étalonnage de référence de la quantité de polyphénols présents dans les extraits a été établi à partir de spectres d'une collection de bois d'hybrides d'Eucalyptus urophylla × E. grandis à humidité constante fixée. D'autres spectres ont été obtenus sur des échantillons de même provenance mais à 8 teneurs en eau couvrant une large plage de variation. L'influence de l'humidité sur l'absorbance proche infrarouge puis sur l'estimation par le modèle de référence a été analysée. / Methods based on near infrared spectroscopy used to assess wood properties are susceptible to variations in physical parameters (temperature, grain size, etc). As wood is a hygroscopically sensitive material, we studied the effects of moisure on near infrared absorbance and calibration to accurately determine the application potential of this technique under routine. A collection of Eucalyptus urophylla x E. grandis hybrid wood pieces were analysed to obtain reference calibration of polyphenol contents in wood extracts via NIR spectra acquired under constant moisture conditions.Others specimens from the same source were assessed to obtain spectra for eight moisture contents spanning a broad variation range. The effects of moisture on absorption and on estimates based on a reference model were analysed. An increase in moisture content prompteda rise in near infrared absorption over the entire spectrum and the water O-H absorption bands. The polyphenol content estimates obtained by assessing specimens against the reference calibration at variable moisture contents revealed prediction bias. Five correction methods were then tested on enhance the robustness relative to moisture. In-depth calibration and external parameter orthogonalization were found to be the most efficient methods for offsetting this factor

    Radiation and Scattering of EM Waves in Large Plasmas Around Objects in Hypersonic Flight

    Get PDF
    Hypersonic flight regime is conventionally defined for Mach> 5; in these conditions, the flying object becomes enveloped in a plasma. This plasma is densest in thin surface layers, but in typical situations of interest it impacts electromagnetic wave propagation in an electrically large volume. We address this problem with a hybrid approach. We employ Equivalence Theorem to separate the inhomogeneous plasma region from the surrounding free space via an equivalent (Huygens) surface, and the Eikonal approximation to Maxwell equations in the large inhomogeneous region for obtaining equivalent currents on the separating surface. Then, we obtain the scattered field via (exact) free space radiation of these surface equivalent currents. The method is extensively tested against reference results and then applied to a real-life re-entry vehicle with full 3D plasma computed via Computational Fluid Dynamic (CFD) simulations. We address both scattering (RCS) from the entire vehicle and radiation from the on-board antennas. From our results, significant radio link path losses can be associated with plasma spatial variations (gradients) and collisional losses, to an extent that matches well the usually perceived blackout in crossing layers in cutoff. Furthermore, we find good agreement with existing literature concerning significant alterations of the radar response (RCS) due to the plasma envelope

    Radiation and Scattering of EM Waves in Large Plasmas Around Objects in Hypersonic Flight

    Full text link
    Hypersonic flight regime is conventionally defined for Mach larger than 5; in these conditions, the flying object becomes enveloped in a plasma. This plasma is densest in thin surface layers, but in typical situations of interest it impacts electromagnetic wave propagation in an electrically large volume. We address this problem with a hybrid approach. We employ Equivalence Theorem to separate the inhomogeneous plasma region from the surrounding free space via an equivalent (Huygens) surface, and the Eikonal approximation to Maxwell equations in the large inhomogeneous region for obtaining equivalent currents on the separating surface. Then, we obtain the scattered field via (exact) free space radiation of these surface equivalent currents. The method is extensively tested against reference results and then applied to a real-life re-entry vehicle with full 3D plasma computed via Computational Fluid Dynamic (CFD) simulations. We address both scattering (RCS) from the entire vehicle and radiation from the on-board antennas. From our results, significant radio link path losses can be associated with plasma spatial variations (gradients) and collisional losses, to an extent that matches well the usually perceived blackout in crossing layers in cutoff. Furthermore, we find good agreement with existing literature concerning significant alterations of the radar response (RCS) due to the plasma envelope

    Single Event Upset tests and failure rate estimation for a front-end ASIC adopted in high-flux-particle therapy applications

    Get PDF
    none8A 64 channels Application Specific Integrated Circuit, named TERA09, designed in a 0.35 m technology for particle therapy applications, has been characterized for Single Event Upset probability. TERA09 is a current-to-frequency converter that offers a wide input range, extending from few nA to hundreds of A, with linearity deviations in the order of a few percent. This device operates as front-end readout electronics for parallel plate ionization chambers adopted in clinical applications. This chip is going to be located beside the monitor chamber, thus not directly exposed to the particle beam. For this reason, no radiation hardening techniques were adopted during the microelectronics design. The intent of the test reported in this paper is to predict the TERA09 upset rate probability in a real application scenario. Due to the fact that TERA09 has an extended digital area with registers and counters, it is interesting to estimate the effect of the secondary neutron field produced during the treatment. The radiation damage test took place at the SIRAD facility of the Italian National Institute for Nuclear Physics in Padova, Italy. The SIRAD facility allows to study the CMOS upset rate as a function of the energy deposited during irradiation. By irradiating the chip with ions of different Linear Energy Transfer, it is possible to calculate the single event effect cross-section as a function of the deposited energy. It resulted that the minimum deposited energy in a CMOS silicon sensitive volume of , responsible for a Single Event Upset probability higher than zero, is 690 keV. In the last part of the paper, we calculated the expected upset probability in a typical clinical environment, knowing the fluence of secondary, backward-emitted neutrons. Considering as an example a treatment room located at the CNAO particle therapy center in Pavia, the expected upset rate for TERA09 is events/year. Using a redundant and independent monitor chamber, the upset probability expected during one detector readout is lower than , as explained in the document.noneFausti, F.; Mazza, G.; Giordanengo, S.; Hammad Ali, O.; Manganaro, L.; Monaco, V.; Sacchi, R.; Cirio, R.Fausti, F.; Mazza, G.; Giordanengo, S.; Hammad Ali, O.; Manganaro, L.; Monaco, V.; Sacchi, R.; Cirio, R

    Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    Get PDF
    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30-250 mm Bragg peak depth in water). Homogeneous square fields of 3Ă—3 and 6Ă—6 cm2 were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3Ă—3 cm<sup>2</sup> area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam direction. A strong distortion in Bragg peak measurement was observed, confirming manufacturer recommendation on avoiding such configuration. Very good results were obtained for SOBP measurements, with a difference below 1% between measured and TPS-calculated doses. The stability of detector sensitivity in the observation period was within the experimental uncertainty. Conclusions: Dosimetric characterization of a PTW microDiamond detector in high-energy scanned carbon ion beams was performed. The results of the present study showed that this detector is suitable for dosimetry of clinical carbon ion beams, with a negligible LET and dose-rate dependence

    Online measurement of fluence and position for protontherapy beams

    Get PDF
    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV. This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 ÎĽm wide, with a total sensitive area 13 Ă— 13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5Ă—5 mm2, for a total active area of 16 Ă— 16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications
    • …
    corecore