174 research outputs found
Marine biodiversity and ecosystem functioning: what\u27s known and what\u27s next?
Marine ecosystems are experiencing rapid and pervasive changes in biodiversity and species composition. Understanding the ecosystem consequences of these changes is critical to effectively managing these systems. Over the last several years, numerous experimental manipulations of species richness have been performed, yet existing quantitative syntheses have focused on a just a subset of processes measured in experiments and, as such, have not summarized the full data available from marine systems. Here, we present the results of a meta-analysis of 110 marine experiments from 42 studies that manipulated the species richness of organisms across a range of taxa and trophic levels and analysed the consequences for various ecosystem processes (categorised as production, consumption or biogeochemical fluxes). Our results show that, generally, mixtures of species tend to enhance levels of ecosystem function relative to the average component species in monoculture, but have no effect or a negative effect on functioning relative to the highest- performing\u27 species. These results are largely consistent with those from other syntheses, and extend conclusions to ecological functions that are commonly measured in the marine realm (e.g. nutrient release from sediment bioturbation). For experiments that manipulated three or more levels of richness, we attempted to discern the functional form of the biodiversity-ecosystem functioning relationship. We found that, for response variables related to consumption, a power-function best described the relationship, which is also consistent with previous findings. However, we identified a linear relationship between richness and production. Combined, our results suggest that changes in the number of species will, on average, tend to alter the functioning of marine ecosystems. We outline several research frontiers that will allow us to more fully understand how, why, and when diversity may drive the functioning of marine ecosystems. Synthesis The oceans host an incredible number and variety of species. However, human activities are driving rapid changes in the marine environment. It is imperative we understand ecosystem consequences of any associated loss of species. We summarized data from 110 experiments that manipulated species diversity and evaluated resulting changes to a range of ecosystem responses. We show that losing species, on average, decreases productivity, growth, and a myriad of other processes related to how marine organisms capture and utilize resources. Finally, we suggest that the loss of species may have stronger consequences for some processes than others
Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes
Natural Environment Research Council. Grant Number: NE/D013305/
The functional role of producer diversity in ecosystems
Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the world\u27s biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems
Diversity of habitats and bacterial communities support landscape-scale multifunctionality differently across seasons
Abstract In this study, we demonstrate how changes in the diversity of habitat and bacterial communities affect landscape multifunctionality. Habitat diversity may beget species diversity by increasing niche availability and resource complementarity. Species diversity, in turn, generally promotes multifunctionality, i.e. the simultaneous performance of multiple ecosystem functions. However, the relationship between habitat diversity and functioning remains to be explicitly explored. In order to test the relationship between habitat diversity and multifunctionality we constructed experimental landscapes of four different habitats common in shallow-water sediment ecosystems: cyanobacterial mats, Ruppia maritima meadows, silty mud and sandy beach. We manipulated the diversity of these habitats over three consecutive seasons and measured bacterial diversity, benthic microalgal diversity and four functions related to marine nitrogen cycling (gross primary production, nitrogen fixation, denitrification and uptake of dissolved inorganic nitrogen). Our results showed that higher habitat and bacterial diversity, but not benthic microalgal diversity, increased landscape multifunctionality. However, the relative importance of habitat and bacterial diversity varied with season. Habitat diversity was generally the strongest driver, affecting multifunctionality directly in summer and indirectly via bacterial diversity in autumn. In spring, neither of the two aspects of diversity was important. Our study demonstrates the importance of considering temporal differences in both habitat and species diversity for landscape multifunctionality, and the importance of direct and indirect effects in mediating ecosystem functions. Habitat homogenization in concert with loss in biodiversity can thus be a driving force of declining ecosystem functioning and the services they underpin
Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress
The online version of this article (doi:10.1007/s00442-011-1930-3) contains supplementary material, which is available to authorized users.Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass acumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.The Portuguese Foundation for Science and
Technology supported I. Fernandes (SFRH/BD/42215/2007
Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales
The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships
Biodiversity increases and decreases ecosystem stability
International audienc
Invasions and Extinctions Reshape Coastal Marine Food Webs
The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions (∼70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes
Diversity and community biomass depend on dispersal and disturbance in microalgal communities
The evidence for species diversity effects
on ecosystem functions is mainly based on studies not
explicitly addressing local or regional processes
regulating coexistence or the importance of community
structure in terms of species evenness. In experimental
communities of marine benthic microalgae,
we altered the successional stages and thus the strength
of local species interactions by manipulating rates of
dispersal and disturbance. The treatments altered
realized species richness, evenness and community
biomass. For species richness, dispersal mattered only
at high disturbance rates; when opening new space,
dispersal led to maximized richness at intermediate
dispersal rates. Evenness, in contrast, decreased with
dispersal at low or no disturbance, i.e. at late successional stages. Community biomass showed a nonlinear
hump-shaped response to increasing dispersal at
all disturbance levels.We found a positive correlation
between richness and biomass at early succession, and
a strong negative correlation between evenness and
biomass at late succession. In early succession both
community biomass and richness depend directly on
dispersal from the regional pool, whereas the late
successional pattern shows that if interactions allow
the most productive species to become dominant,
diverting resources from this species (i.e. higher
evenness) reduces production. Our study emphasizes
the difference in biodiversity–function relationships
over time, as different mechanisms contribute to the
regulation of richness and evenness in early and late
successional stages
Tree diversity and species identity effects on soil fungi, protists and animals are context dependent
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se
- …