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Abstract

Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sus-

tain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced

when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no

studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality

at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic

macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-

based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however,

significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature.

Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required

to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that

previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a

changing environment.
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Introduction

Biodiversity loss and environmental warming are

major threats to the functioning of natural ecosystems

(MEA, 2005; IPCC 2013), with both having potentially

strong impacts on key components of ecosystem func-

tioning, such as decomposition or primary production

(Hooper et al., 2012). However, surprisingly little is

known about the combined effects of biodiversity loss

and temperature on single and joint ecosystem

processes, given that each process may respond

differently to these drivers of change (Duffy, 2009;

Yvon-Durocher et al., 2010; Hooper et al., 2012). Fur-

thermore, as both species loss and warming are widely

predicted to increase simultaneously in many ecosys-

tems worldwide in the near future, understanding the

interactions between them will be critical for predict-

ing the future levels of ecosystem functioning (Cardi-

nale et al., 2012).

Intensive research into biodiversity–ecosystem func-

tioning (hereafter B–EF) relationships over the past two

decades has found that in general a few species are

required to maximize single ecosystem processes (Car-

dinale et al., 2006, 2012). For instance, in freshwater

communities, B–EF curves can saturate at just six spe-

cies (Jonsson & Malmqvist, 2003) or fewer (Perkins

et al., 2010; Reiss et al., 2010, 2011), a tiny fraction of the

real biodiversity found in natural systems. Such studies

suggest that many species are functionally redundant,

although this has been questioned recently, in part

because of the lack of studies that consider multiple

processes, which provide a more complete picture of

ecosystem functioning (Gamfeldt et al., 2008; Reiss

et al., 2009). A few recent studies suggest that high lev-

els of biodiversity may be needed to sustain multifunc-

tionality (Duffy et al., 2003; Hector & Bagchi, 2007;

Gamfeldt et al., 2008; Zavaleta et al., 2010; Isbell et al.,

2011; Peter et al., 2011; Maestre et al., 2012a,b). Positive

biodiversity–ecosystem multifunctionality (hereafter

B–MF) relationships can arise through variation among

species in their contributions to different processes,

and/or through interactions among species that
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enhance multiple processes (Gamfeldt et al., 2008).

While this area of research is starting to gain momen-

tum, the relative importance of both these effects

remains unclear (Byrnes et al., 2014). A better mechanis-

tic understanding can be gained by coupling controlled

experiments with appropriate analyses of both multi-

functionality and its component processes (Reiss et al.,

2009; Byrnes et al., 2014).

The importance of biodiversity for multifunctional-

ity should be especially critical in a heterogeneous or

changing environment. This is because species differ

in their optima (where physiological processes are

maximized) and therefore their contribution to ecosys-

tem functioning across environmental gradients (Isbell

et al., 2011; Steudel et al., 2012). Despite ecosystem

processes being strongly temperature-dependent

(Brown et al., 2004), and the widespread concern

about the effects of environmental warming (IPCC

2013), no study (of which we are aware) has tested

the effects of temperature on B–MF relationships.

These are likely to be particularly pronounced in

aquatic systems because they are dominated by ecto-

therms, whose performances are largely determined

by environmental temperature (Vannote & Sweeney,

1980). In these systems, we might expect significant

variation in the identity of species, or species assem-

blages, contributing to processes under different ther-

mal regimes (Woodward et al., 2010).

We used a model freshwater system to test the

impacts of temperature and biodiversity on both multi-

ple individual processes and ecosystem multifunction-

ality. Our experiments were conducted at three

temperatures (5, 10 and 15 °C) selected to match the

annual average and seasonal extremes of streams

within the temperate study region and to include 5 °C
increments that mimic the extent of warming predicted

by 2100 (IPCC 2013), i.e. from 5 °C to 10 °C and from

10 °C to 15 °C. At each temperature, we manipulated

the richness of four dominant benthic macroinverte-

brate species varying in feeding preferences (see Mate-

rials and methods). We quantified rates of five key

ecosystem processes, ranging from resource depletion

(leaf decomposition and algal consumption [hereafter

herbivory]) to production of fine particulate organic

material (hereafter FPOM), and algae biomass, and the

regeneration of the macronutrient nitrogen (N) through

ammonification (Ammonium [NH4
+]).

Our objectives were first to test the dual effects of

species richness and temperature on single ecosystem

processes and then to quantify their combined contri-

bution to multifunctionality. To do so, we included a

range of novel ‘Type’ models in the analysis of single

processes, which we have recently developed for B–EF

research (Reiss et al., 2011). These models are based on

the general assumption that a species performance in

polyculture can be predicted from its performance in

monoculture and that temperature shapes the perfor-

mance of a species in polyculture in the same way as it

does in monoculture (Table 1).

We also extended the recent ‘Multiple Threshold’

framework of Byrnes et al. (2014) to the analysis of mul-

tifunctionality at the different experimental tempera-

tures. This framework describes the linear relationship

between species richness and the total number of pro-

cesses exceeding a predetermined threshold (some pro-

portion of maximal functioning). In contrast with other

approaches introduced to investigate B–MF relation-

ships (Hooper & Vitousek, 1998; Hector & Bagchi, 2007;

Gamfeldt et al., 2008), the one used here investigates

the effect of diversity on multifunctionality across a

range of thresholds and circumvents the problem of

arbitrary thresholds being defined by the investigators

(e.g. Zavaleta et al., 2010; Maestre et al., 2012b).

The combination of our experimental design, novel

statistical models, and the model framework we

adopted allowed the actual species level contribution

to specific processes and multifunctionality to be

tested. This improves on previous studies that have

calculated (Gamfeldt et al., 2008) or estimated indi-

vidual species contributions to multifunctionality

using regression-based techniques (Hector & Bagchi,

2007; Isbell et al., 2011). Consequently, we were able

to characterize the links between single processes

and multifunctionality and their responses to biodi-

versity and temperature, and to test the following

predictions.

For single ecosystem processes, we predicted that: (i)

species effects should be additive with polyculture per-

formance well approximated by the sum of monocul-

ture parts (Reiss et al., 2011); (ii) process rates should

increase with biomass (Brown et al., 2004) if all species

contribute to a given process; and (iii) species contribu-

tion to processes should vary with temperature and dif-

fer among species (Vannote & Sweeney, 1980), and thus

models including temperature should predict process

rates more accurately.

For multiple processes, we predicted that: (i) mul-

tifunctionality should increase with species richness,

with a different species pool driving processes at

different temperatures because species possess differ-

ent functional and response traits (Vannote & Swee-

ney, 1980; Petchey & Gaston, 2002); and (ii) B–MF

relationships are sensitive to the choice of threshold

values, so the strength of biodiversity effects should

vary across a range of multifunctionality thresholds

(Byrnes et al., 2014).
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Materials and methods

Experimental set-up

Laboratory experiments were conducted in aquaria

(28 9 14 9 20 cm, volume 5 l) in environmental-control (EC)

rooms maintained at 5, 10 or 15 °C (�1 °C). Aquaria were

filled with 1 : 3 parts circumneutral stream/degassed and

dechlorinated tap water (Perkins et al., 2010; Reiss et al., 2011),

aerated, and arranged in a block design under full-spectrum

lighting (~50 lmol photons m�2 s�1). Photoperiod was set to

resemble late autumn conditions (8 h light/16 h dark cycle)

when the experiment took place. Logistical constraints meant

that we designed the experiment to explicitly quantify the

interactions between temperature and biotic drivers (the num-

ber, type and composition of species), rather than investigate

the effects of temperature per se (i.e. the relative effect of tem-

perature on process rates). To provide a valid statistical test

for the latter would have required unattainable levels of repli-

cation of EC rooms. Within each temperature regime, we

manipulated the richness of four benthic macroinvertebrate

species that are widespread and codominant members of local

stream assemblages; Asellus aquaticus (L.), Bithynia tentaculata

(L.), Gammarus pulex (L.) and Sericostoma personatum (Kirby &

Spence). These consumer species represent a range of feeding

preferences from obligate detritivores [S. personatum (Elliott,

1969)], facultative detritivore-herbivores [A. aquaticus and

G. pulex (Moore, 1975; Grac�a et al., 1993)] to obligate herbi-

vores [B. tentaculata (Brendelberger, 1995)] that exploit the

‘brown’ (i.e. detrital) and/or ‘green’ (i.e. algal) energy

pathways in the food web (Woodward et al., 2008).

Consumer diversity (all monocultures, and all possible

equal combinations of two, three and four species assem-

blages) was manipulated in a substitutive design with a con-

stant density of 12 individuals per aquarium (Jonsson &

Malmqvist, 2000; Perkins et al., 2010; Reiss et al., 2011). We

also included a microbe-only control treatment to test if

process rates in these treatments differed to those when

macroinvertebrate consumers were present (Data S1). These

diversity treatments were crossed with temperature to give 48

experimental treatments and replicated to give a total of 96

aquaria. Although we had only two replicates for each

experimental treatment, replication for each level of richness

and the number of treatments containing the same species

were high, as is typical for such factorial diversity experiments

(Bailey & Reiss, 2014). For example, in our experiment, each

species was present in half (48/96) of the experimental units.

Assemblage biomass was calculated for each aquarium from

high-resolution digital photographs taken of each individual

consumer, measured using image analysis software Image-

Pro� Plus (Media Cybernetics, Inc., Rockville, MD, USA) and

converted into dry body mass (mg) using empirically derived

length–mass equations (see Data S1 for equations).

Each aquarium was supplied with two basal resources: 3 g

of freshly abscised air-dried alder leaves [Alnus glutinosa L.

Gaertn] preconditioned in invertebrate-free aquaria for 7 days

Table 1 Array of linear models used to test the effects of species diversity and environmental temperature on single ecosystem

processes

ANOVA term Number of parameters Explanation if significant (P < 0.05) d.f

a) Constant 1 The grand mean is different from zero. 1

b) Temperature 3: 5, 10 and 15 °C Environmental temperature influences functioning

(one or more levels differ from grand mean).

2

c) Richness 4: 1, 2, 3 and 4 species cultures Species number influences functioning (one or more

levels differ from grand mean).

3

d) Type 4: y = a1x1 + a2x2 + a3x3 + a4x4 Polyculture (y) performance is well predicted from

monoculture information.

3

e) Composition 15: Assemblages: A, B, C, D,

AB, AC, etc.

Species assemblages perform differently (variation

above that accounted for by terms c & d).

8

f) Richness 9

Temperature

12: (4 9 3) Different species richness effects emerge at different

temperatures (variation above that accounted for by

terms b & c).

6

g) Type 9

Temperature

12: 5 °C: y = b1x1 + b2x2 + b3x3 + b4x4 Species perform in an additive fashion, but performance

changes with temperature (variation above that

accounted for by terms b & d).

6

10 °C: y = c1x1 + c2x2 + c3x3 + c4x4
15 °C: y = d1x1 + d2x2 + d3x3 + d4x4

h) Composition 9

Temperature

45: (15 9 3) The effects of composition varies with temperature

(variation above that accounted for by terms e, f and g).

16

ANOVA terms are listed in increasing complexity (number of parameters), starting with the smallest (‘Constant’), up to the largest

(‘Composition 9 Temperature’). Each letter (a–h) corresponds to the edge (connection) between models in the hierarchy of models

(see Figure S3 for how models are related). Our statistical analysis was designed in a way that the explanation given by the signifi-

cance of terms in the ANOVA table reflects the comparison between the sums of squares for that term and the sum of squares for its

(simpler) constituent parts, which is reflected in the degrees of freedom (d.f) for that term. Constants such as a1 are the fitted param-

eters for species 1–4 and xi is the number of individuals of type i in the culture (for example, in the duoculture AB, x1 = x2 = 6 and

x3 = x4 = 0).
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previously (cf. Perkins et al., 2010; Reiss et al., 2011) and a

10 9 10 cm ceramic tile colonized by benthic algae (Navicula

cryptonella Lange-Bertalot). Navicula cryptonella was cultured

on tiles for 3 weeks prior to the experiment in sterile tanks

containing nutrient-rich diatom culture medium (CCAP;

http://www.ccap.ac.uk/ media/documents/DM.pdf) until a

dense monospecific biofilm was achieved (mean chlorophyll

concentration 3.70 lg cm�2, � 0.15 SE). Both these food

sources represent widespread basal resources for many fresh-

water food webs, including those in the surrounding locale,

which support diverse assemblages of detritivore and herbi-

vore consumers (e.g. Woodward et al., 2008).

The experiment ran for 32 days, by which time depletion of

resources in the fastest treatments approached 50% of initial

standing stocks (cf. Perkins et al., 2010; Reiss et al., 2010, 2011).

Five ecosystem processes were measured over the course of

the experiment: leaf decomposition, herbivory, algal produc-

tion, FPOM production and ammonification (NH4
+). Rates of

these processes were calculated from the change in stocks or

concentrations from time zero (T0), when invertebrate assem-

blages were added, to the end of the experiment, except for

ammonification, which was calculated between T0 and T8 (see

below). Leaf decomposition was quantified from the material

remaining (>1 mm diameter) at the end of the experiment,

which was dried at 80 °C to a constant weight and subtracted

from initial values – after accounting for losses caused by

leaching and microbial activity prior to the addition of inverte-

brate assemblages (see Data S1). Algal biomass remaining on

the tiles at the end of the experiment was scraped into individ-

ual bottles and chlorophyll analysis was performed (Lorenzen,

1967). To measure rates of herbivory, these chlorophyll con-

centrations were subtracted from initial concentrations (quan-

tified for 30 additional tiles) at the beginning of the

experiment. FPOM production was quantified from organic

material <1 mm diameter, collected from each aquarium,

dried and weighed. To quantify algal production, we placed a

blank 8 9 8 cm ceramic tile on the bottom of each aquarium,

which was enclosed in a fine mesh cage (0.25 mm aperture) to

prevent consumer grazing. Algal biomass was removed from

these tiles at the end of the experiment and chlorophyll analy-

sis performed (as described above). Ammonification was

quantified between T0 and T8 when NH4
+ peaked in the water

column (Figure S1). NH4
+ concentrations were determined in

15 ml water samples filtered through a preflushed (20 ml

ultra-high-purity water, Elga) polypropylene membrane filter

(0.2 lm, VWR International, Leicester, UK) and analysed

using a segmented flow auto analyser (Skalar, Netherlands)

and standard techniques (Grasshoff et al., 1983).

Statistical analysis of single processes

Single processes were analysed using a series of linear models

that included terms for the effects of environmental tempera-

ture (‘Temperature’), species richness (‘Richness’), assemblage

composition (‘Composition’) and their interactions. In our

analysis, ‘Richness’ reflects the average contribution of species

number to a process, irrespective of the particular species

present, and ‘Composition’ reflects the average contribution of

different species assemblages to a process (Jonsson & Malmq-

vist, 2000; Perkins et al., 2010).

We also included a set of ‘Type’ models into the analysis to

test explicitly for additive species effects in the experiment

(after Reiss et al., 2011). The simplest of these models (‘Type’)

assumes that each species has a unique performance that pro-

vokes a characteristic effect on a process, irrespective of

whether the species is combined with other species or not.

Thus, the rate of a given process is equivalent to:

y = a1x1 + a2x2 + a3x3 + a4x4, where ai is the performance of

species i in monoculture and xi is the number of organisms of

species i in an aquarium (defined as covariates x1,..,x4). We

also included the larger model ‘Type 9 Temperature’ which

maintains the assumption of additive species effects, but the

effects of species are different for each level of temperature

(Table 1).

In total, we considered 18 models, all of which were related

in a hierarchy (as shown in Figure S2) and were fitted by

analysis of variance (ANOVA). For each process, we ranked all

models in terms of parsimony by calculating Akaike’s Infor-

mation Criterion (AICc) with correction for finite sample sizes

(after Hurvich & Tsai, 1989; Table S1). Because the largest

model in our analysis was defined by ‘Composition 9 Tem-

perature’ yet some of the smaller models included covariates

(e.g. ‘Type’), there was no statistical package to run the whole

suite of models in a single pass. The standard procedure in

such circumstances is to extract the output from the individual

models and use the residual sums of squares (SS) and degrees

of freedom (d.f.) to build the ANOVA table (e.g. Bell et al., 2005;

Reiss et al., 2011). Each row in the ANOVA table corresponds to

a specific hypothesis (given in Table 1) and tests for whether

the difference between a model, and its related smaller ones,

can explain the data significantly better or not (Grafen &

Hails, 2002; Reiss et al., 2011).

In all the models, we included two random error terms: one

for blocks (6 levels); and one for EC rooms (3 levels), with

‘Blocks’ nested in ‘Rooms’. Because the whole of each EC

room had to be at the same temperature, the ‘Temperature’

factor was effectively the whole-plot factor in a split-plot

experiment (Bailey, 2008; Montgomery, 2012). As there were

the same number of rooms as temperatures, there are no

degrees of freedom for estimating the variability between

rooms, and hence no denominator for an F-test of the null

hypothesis that ‘Temperature’ had no effect. For each of the

five single ecosystem processes, there was at least one interac-

tion involving ‘Temperature’ that was statistically significant

at the 5% level (Table 2). By the marginality principle (Nelder,

1977; Grafen & Hails, 2002), which is similar to the hierarchy

principle (Montgomery, 2012), no interaction should be

included in a fitted model without its relevant main effects.

Thus, it is clear that ‘Temperature’ should be included in the

fitted model, even though there is no valid statistical test for

the effect of ‘Temperature’.

Analysis of multifunctionality

We applied the Multiple Threshold framework of Byrnes et al.

(2014) in the analysis of multifunctionality. This framework

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd, 21, 396–406
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uses a metric for multifunctionality (MFt) that describes the

linear relationship between species richness and total number

of processes (P) that exceed a predetermined threshold (ti),

defined as a given proportion of the maximum observed rate

for each process in a study:

MFt ¼
XP

i¼1

½riðpÞi [ ti� ð1Þ

where pi is the value for process i in a given unit and ri. is a

mathematical function for standardizing processes (see

below). The inverse value of MFt estimates the proportional

increase in multifunctionality per addition of a species – e.g. a

MFt value of 0.25 indicates that four additional species are

needed to bring an extra process above a given threshold.

As a first stage, we defined the desirable direction of pro-

cess rates and calculated the maximum rate (Rmax) for each

process. In all cases, the best-performing aquaria were defined

as those with the highest positive impact on processes and val-

ues of Rmax were calculated from the average of three highest

performing aquaria within each temperature level. Here, we

use the mean of n + 1 highest measurements of a process as

our maximum, where n is the smallest sample size of a single

richness treatment level (Byrnes et al., 2014). In the case of

ammonification, process values were negative at 5 and 10 °C
and positive at 15 °C [i.e. net uptake of NH4

+ and net release

of NH4
+ over time, respectively (Table S2)]. The best-perform-

ing aquaria were identified as being opposite in direction to

the microbe-only controls, which exhibited a net uptake of

NH4
+ at all temperatures (Figure S1). To standardize this pro-

cess (i.e. make all process values positive), we normalized val-

ues by accounting for the range of values in the data set using

the formula: (x – z)/(a – z), where x is the observed value, z

and a are the lowest and highest observed value in the data

set, respectively.

In a second stage, we used the multifunc package in the R

environment (R Development Core Team, 2013) to first com-

pute the number of processes performing at or above thresh-

olds of 25%, 50% and 75% of Rmax for each richness level

within temperatures. That is, data for each temperature were

analysed separately. These thresholds represent the range con-

sidered in previous studies on ecosystem multifunctionality

(Gamfeldt et al., 2008; Zavaleta et al., 2010; Maestre et al.,

2012b). We performed an F-test to assess the effects of species

richness on multifunctionality at these thresholds and to test

whether including species richness provided a better fit than a

model with only an intercept (Byrnes et al., 2014).

We then fitted a generalized linear model with a quasi-

poisson error to estimate a linear relationship predicting the

number of processes performing at or above all thresholds

(Byrnes et al., 2014). We restricted our analysis between

thresholds of 1–83%, as above this upper threshold, the mod-

els would not converge. Slope estimates (MFt) and statistics

were then computed across temperatures and plotted against

threshold values. We used the getIndices function in multifunc

package to extract specific metrics, which provide key infor-

mation about how diversity can influence multifunctionality

including: Minimum Threshold (Tmin), Maximum Threshold

(Tmax), Threshold of Maximum Diversity Effect (Tmde) andT
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Realized Maximum Effect of Diversity (Rmde) (see Fig. 2 for

definitions).

To compare the performance of different assemblages

across the temperature gradient, we also calculated a multi-

functionality ‘index’ for each aquarium (after Zavaleta et al.,

2010). This index is based upon the mean percentage of Rmax

achieved by consumer assemblages across all the processes.

Within each temperature, we then ranked each assemblage

composition according to this index to assess changes in per-

formance (Table 3).

All statistical tests were performed on untransformed data

from all 90 experimental aquaria (controls excluded) using R

version 3.0.2 (R Development Core Team, 2013).

Results

Single processes

Process rates were not strongly related to species

richness (Table 2). While the ‘Richness’ model that

tested for species richness effects was significant for

rates of herbivory and FPOM production, there was

no systematic pattern in functioning across richness

levels (Figure S3). Overall, species richness explained

very little variation in the data and the ‘Richness’

model ranked among the worst models based upon

AICc (Table S1).

Species effects on all single processes were largely

additive and influenced by temperature, which meant

that our statistical models that tested for this (‘Type’

and ‘Type 9 Temperature’) always needed to be

included in the final model (significant for all pro-

cesses; Table 2). The performances of species polycul-

tures in our experiment were well approximated by

simply extrapolating from the monocultures (i.e. the

polycultures were roughly ‘the sum of their parts’ with

the model ‘Type’ explaining 10–54% of variation across

processes; Table S1). Predictions were significantly

improved, however, when information on species-

specific responses to temperature were included

(model ‘Type 9 Temperature’ explained 49–89% of

variation across processes; Fig. 1). For each process,

‘Type 9 Temperature’ ranked among the top three

models and the difference between its AICc value and

that for the top-ranking model was never more than

5% of the difference between the largest and smallest

value (Table S1).

The superiority of the ‘Type 9 Temperature’ model

in explaining single processes highlights that nonaddi-

tive interactions were weak in our experiment. Indeed,

models ‘Composition’ and ‘Composition 9 Tempera-

ture’ which tested for this had only limited effects

across processes (Table 2) and overall were ranked

among the worst models (Table S1). While we could

not provide a valid statistical test for the effects of

‘Temperature’, it was clear temperature effects were

positive for leaf decomposition and FPOM production,

inconsistent for herbivory and net ammonification and

absent for algal production (Figure S4).

Not all process rates were significantly related to

assemblage biomass, highlighting that not all species

contributed to each individual process. Leaf decompo-

sition and FPOM production were maximized by

monocultures of S. personatum, the largest species in

this study (Table S2), and were positively correlated

with assemblage biomass (Ordinary Least Squares

regression; r2 = 0.35, n = 90, P < 0.001, and r2 = 0.50,

n = 90, P < 0.001, respectively; Figure S5). In contrast,

algal production was maximized in monoculture by G.

pulex (Table S2), the smallest species in the study, and

significant negative effects of assemblage biomass were

observed (r2 = 0.06, n = 90, P = 0.011). There was no

effect of assemblage biomass for herbivory and net

ammonification (Figure S5).

Multifunctionality

Species richness was positively correlated with the

number of processes exceeding threshold values of 25%

at 5 °C (F1,28 = 8.04, P = 0.008) and 15 °C (F1,28 = 7.49,

P = 0.011), but not for 50% and 75% at either tempera-

ture (P > 0.05 in both cases; Fig. 2a, c). In contrast, no

significant relationship was observed for any of the

three thresholds at 10 °C (all P > 0.05; Fig. 2b), high-

lighting that species richness effects were not ubiqui-

tous, but dependent on the environmental context.

Table 3 Multifunctionality index scores for best-performing

species assemblages across temperatures including all mono-

cultures

Assemblage

composition

Multifunctionality index (rank out of

15) by temperature

5 °C 10 °C 15 °C

A.a + G.p + S.p 76% (1) 58% (9) 73% (1)

G.p 70% (4) 75% (1) 58% (8)

A.a 44% (15) 48% (13) 41% (15)

B.t 50% (13) 46% (14) 58% (9)

S.p 73% (2) 69% (3) 67% (3)

Within each temperature regime, each assemblage composi-

tion was ranked (out of 15) according to a multifunctionality

index, which is the mean percentage of the Rmax observed for

each ecosystem process. As Rmax for each process was calcu-

lated from the mean of the highest three aquaria (within each

temperature level), it is possible for some assemblages to

achieve >100% of this level for one or more process. Abbrevia-

tions: A.a Asellus aquaticus; B.t, Bithynia tentaculata; G.p, Gamm-

arus pulex and S.p, Sericostoma personatum.
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Examining the slope of the richness–MFt relationship

across our full range of thresholds revealed that rich-

ness had a positive impact at both temperature

extremes (Fig. 2d, f), but no effect at 10 °C (Fig. 2e). At

5 °C, multifunctionality increased with species richness

at thresholds between 21% (Tmin) and 43% (Tmax) and

the threshold of maximum diversity effects (Tmde) was

39%, with a realized maximum diversity effect (Rmde)

of 0.50; i.e. approximately two species were needed to

drive an additional process. For 15 °C, the relationship

peaked at a similar threshold (Tmde = 33%) and dis-

played a similar Rmde value (0.49 processes added per

species) to that observed at 5 °C, yet multifunctionality

increased with species richness across a greater range

of thresholds (between 4% and 38%).

The identity of assemblages promoting processes

changed with temperature and no single assemblage

was the best at performing across all temperatures, as

revealed by our multifunctionality index (Table 3). For

example, the assemblage of A. aquaticus + G. pulex + S.

personatum performed best at 5 °C and 15 °C, but was

only ranked 9 (of a possible 15) at 10 °C (Table 3). This

meant that polyculture performance decreased relative

to monoculture performance at 10 °C compared to the

other temperatures, and thus no significant positive

richness effects were observed at this temperature

(Fig. 2e).

Discussion

We found clear and compelling evidence that biodiver-

sity becomes more important in sustaining ecosystem

functioning when multiple processes and environmen-

tal contexts are considered, with species contributing

(a) (b)

(d)(c)

(e)

Fig. 1 Relationships between fitted values for model ‘Type 9 Temperature’ and observed rates of ecosystem processes (a–e). Circles,

squares and triangle symbols correspond to 5, 10 and 15 °C temperature treatments respectively. Solid lines represent 1 : 1 fits and

dashed lines prediction intervals (� 2 SD). Coefficient of variation values (r2) are given for the variation explained by the model in the

analysis (Table S1).
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differently to each process, and in ways that change

with environmental conditions. A general picture

emerged from our study: single processes depended

largely on the additive contribution of species across

temperatures, whereas multifunctionality was primar-

ily driven by species complementarity across processes

and temperatures. Our results clearly demonstrate the

context dependency of biodiversity effects as, although

species richness had negligible effects on individual

processes, it influenced multifunctionality, but only at

the coldest and the warmest temperature. This key

finding highlights the need to measure multifunctional-

ity and to do so across a range of environmental

conditions, to bring greater realism and predictive

power to future B–EF research (Gamfeldt et al., 2008; Re-

iss et al., 2009; Cardinale et al., 2012). For future experi-

mental set-ups, this suggests that small species are

especially suitable study organisms because the environ-

mental factor (e.g. temperature or pH) has to be repli-

cated, resulting in a large number of experimental units.

Our experimental design allowed us to identify the

range of processes driven by each species in isolation

and in combination, under different environmental

conditions. We found simple additive species effects

across temperatures (Fig. 1), with limited effects of

richness. This fits with a small but growing body of

empirical evidence from similar experimental systems

involving single processes (Perkins et al., 2010; Reiss

et al., 2010, 2011). Our tailored statistical models

enabled us to explore a range of species richness effects,

including facilitation (e.g. Cardinale et al., 2002) and

resource partitioning (e.g. Cardinale, 2011). We found

no evidence, however, that either of these mechanisms

influenced polyculture performance in our study.

Not all species promoted each ecosystem process,

rather species were functionally different, which meant

our set-up was manipulating species richness across

functional groups, not within one functional group (cf.

Cardinale et al. 2006; see Table S2). Nonetheless, some

processes, such as leaf decomposition, were driven by

all four species and considering this process on its own,

species were functionally redundant. Therefore, our

study highlights how assemblages can display high

within-process redundancy, yet still show high levels

of across-process complementarity (cf. Gamfeldt et al.,

2008). In our experiments, additive effects of function-

ally different species promoted multifunctionality. That

is, variation among species in their contributions to dif-

(a) (b) (c)

(f)(e)(d)

Fig. 2 Relationships between species richness and multifunctionality at different environmental temperatures. Panels a–c show rela-

tionships for multifunctionality thresholds of 25%, 50% and 75% of maximum observed process rates (Rmax) with temperature. Panels

d–f show the slope of the relationship between species richness and multifunctionality at multiple threshold values (1–83% of Rmax) for

different temperatures. The 95% confidence intervals (indicated in grey) around the estimated slopes (filled data points) indicate

whether the intervals contain zero, giving a test of the threshold values at which diversity has no effect on multifunctionality. Tmin and

Tmax are the slopes with the lowest and highest threshold that is different from zero, respectively. Tmde is the threshold with the steep-

est slope and Rmde shows the maximum slope estimated at Tmde.
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ferent processes, rather than interactions among species

that enhance multiple processes, resulted in positive

B–MF relationships.

The high performance of model ‘Type 9 Tempera-

ture’ in explaining single processes highlights that tem-

perature had a strong effect on species performance.

Changes in species contributions to different ecosystem

processes under environmental change are to be

expected given that species have different optima (Van-

note & Sweeney, 1980). Indeed, studies in terrestrial

systems showed an increase in the number of plant spe-

cies driving single ecosystem processes under different

scenarios of environmental change (Isbell et al., 2011);

however, these studies did not include temperature.

We found that different species and species assem-

blages promoted multifunctionality at different temper-

atures. For example, the two best-performing

monocultures were G. pulex and S. personatum, how-

ever, which species contributed most to multifunction-

ality changed across the temperature gradient

(Table 3). Our study therefore highlights how a larger

‘regional’ species pool is required to maintain ecosys-

tem multifunctionality across a range of environmental

conditions.

We hypothesized that when all species contribute to

a process, species performance should be related to spe-

cies body mass and, therefore, functioning should

increase with total assemblages biomass (Perkins et al.,

2010; Reiss et al., 2011). Indeed, leaf decomposition and

FPOM production were positively correlated with

assemblage biomass. However, clear identity effects,

not related to body mass, were evident for herbivory

and algal production, which were maximized in mono-

culture by G. pulex, the smallest species in the study

(Table S2). Variation in the importance of functional

traits across different processes meant that no single

species or group of species could sustain full multifunc-

tionality (Table 3), which therefore increased with spe-

cies richness under certain contexts.

Correlations between different ecosystem processes

were evident in our study (Table S3), consistent with

previous B–MF work (Gamfeldt et al., 2008, 2013;

Zavaleta et al., 2010). For example, leaf decomposition,

FPOM production and ammonification were all posi-

tively correlated, because each of these is a part in a

chain of processes typical for decomposition in fresh-

water systems (Wetzel, 2001). We observed a net

uptake of NH4
+ in the microbe-only controls across

temperatures but, interestingly, at 15 °C, there was a

net release of NH4
+ for invertebrate consumer treat-

ments (Figure S1). This was most likely driven by the

different temperature sensitivities of algal and detrital

processes. Algal production was largely insensitive to

temperature (‘Type’ model outperformed model

‘Type 9 Temperature’ for this process; Table 2) consis-

tent with the notion that substrate supply can override

temperature effects (Raven & Geider, 1988). Conse-

quently, the capacity for nitrification (performed by

autotrophs) to keep pace with ammonification was

exceeded at 15 °C, where rates of leaf decomposition

and FPOM production were highest (Figure S4). These

results suggest that rising environmental temperatures

could alter the balance between different ecosystem

processes mediated through detritivore consumers; fur-

ther work is required, however, to test the generality of

these results.

The range of biodiversity levels (up to four species)

and number of processes (five) in our experiment

meant that the maximum possible slope of the relation-

ship between species richness and the number of pro-

cesses, greater than a given threshold (MFt), was 1.25

(i.e. 5/4). Where it had its strongest effect (at 5 °C),
diversity accounted for 40% of the maximum possible

effect on multifunctionality within our experiment,

lower than that reported from the terrestrial BIO-

DEPTH studies [range 50–58% (Byrnes et al., 2014)]. In

our experiment, diversity could not simultaneously

drive all processes to their maxima at all three tempera-

tures: the shallower slope at higher thresholds (above

40% at both 5 and 15 °C) indicated that high species

richness did not guarantee that all processes were sus-

tained at their highest levels (Fig. 2). This observation

is consistent with results from terrestrial studies (Byr-

nes et al., 2014), including, e.g. Zavaleta et al. (2010)

who found that no more than four of seven processes

could be simultaneously provided at a threshold of

50%, regardless of the number of species. Taken

together with our results, this suggests that: (i) biodi-

versity tends to promote multifunctionality until trade-

offs between different processes mean it is no longer

possible to sustain all processes at high levels; and (ii)

this phenomenon occurs across different ecosystem

types.

This study, which considers ecosystem multifunc-

tionality and environmental contexts simultaneously

for the first time, has limitations that should be

addressed by future research. For instance, ecosystem

responses to changes in temperature will be contingent

on the full array of species present within a given sys-

tem, but the number of species used in this study was

relatively low, compared to natural systems (e.g.

Woodward et al., 2008). The closed nature of the experi-

ment also meant that species could not move in or out

of the experimental arenas to track favourable environ-

mental conditions. Furthermore, we assessed the ‘acute’

effects of different thermal regimes on species assem-

blages, while over longer time scales natural communi-

ties would likely change in response to gradually
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altered environmental conditions, e.g. in favour of

warm-tolerant species (Woodward et al., 2010). Tem-

perature effects on ecosystem multifunctionality in our

study might therefore be overestimates, and worthy of

future exploration across a wider range of spatial-

temporal scales.

The consequences for ecosystem functioning of biodi-

versity loss and environmental change are poorly

understood, but through manipulating diversity and

environmental temperature simultaneously in our

experiment, we were able to link the contribution of dif-

ferent assemblages and temperature regimes to a range

of single process rates and multifunctionality. The for-

mer were reasonably well predicted from monocul-

tures, but because of differences in thermal responses,

these were improved still further when information on

species performance at different temperatures was

included. Although species richness often had neg-

ligible effects on single processes, it was far more

important when multiple processes and different envi-

ronmental conditions were considered together: i.e.

overall functioning is more contingent on both biodiver-

sity and environmental context than would be inferred

from previous generations of B–EF experiments.

Consequently, high levels of biodiversity are likely

required to sustain multiple ecosystem processes in the

face of environmental change anticipated over the next

decades.
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