102 research outputs found

    Climate change impoverishes and homogenizes ants’ community structure: a long term study

    Get PDF
    Climate change brings along trend-like changes as well as changes in the temporal variations in environmental conditions which interact with the biological dynamics of ecological systems. Therefore, only studies covering several decades may unveil long term trends in ecological systems, such as in animal communities. To demonstrate if recent climatic changes have caused fundamental changes in the structure of a key arthropod community, I studied the long-term dynamics of ant colonies for 37 years on a sandy grassland in central Hungary. To be able to monitor colonies – the natural units of ant communities – with the possible least disturbance, I applied two grids of a total of 80 slate plates as artificial nesting sites. Prior to the presented study, a well-defined spatial ant community structure had been identified in the studied habitat, which consisted of three species groups (dune top, transitional and dune slack groups), occupying different habitat patches. During the study period 2813 nests of 11 ant species were recorded under the slates. Over the 37 years, community pattern markedly changed, dune slack species disappeared from the studied plots, while the frequency of drought-tolerant dune top species increased by a significant trend. No significant trend was observed in the case of the transitional species group. On the species population level, two species, Lasius niger and Formica cunicularia, showed an intensive population decline; while the Plagiolepis taurica population significantly increased and spatially joined the transitional species group in the dune slack in the second half of the project. These changes led to a major decline in species richness and a homogenization of species composition across habitat patches. Multiple correlation analyses revealed that the depletion of groundwater had the strongest relationship with these population trends. The study indicates that climate change can be linked to a fundamental change in the community structure of major ecosystem actors

    The Falling Incidence of Hematologic Cancer After Heart Transplantation

    Get PDF
    [Abstract] Background. A number of changes in the management of heart transplantation (HT) patients have each tended to reduce the risk of post-HT hematologic cancer, but little information is available concerning the overall effect on incidence in the HT population. Methods. Comparison of data from the Spanish Post-Heart-Transplantation Tumour Registry for the periods 1991–2000 and 2001–2010. Results. The incidence among patients who underwent HT in the latter period was about half that observed in the former, with a particularly marked improvement in regard to incidence more than five yr post-HT. Conclusions. Changes in HT patient management have jointly reduced the risk of hematologic cancer in the Spanish HT population. Long-term risk appears to have benefited more than short-term risk

    Response of the photosynthetic apparatus to a flowering-inductive period by water stress in Citrus

    Full text link
    The photosynthetic responses to a flowering-inductive water-stress period and recovery were studied and compared in two Citrus species. Under greenhouse conditions, Fino lemon and Owari satsuma trees were subjected to moderate (-2 MPa at predawn) and severe (-3 MPa) water stress levels and were re-watered after 60 days. Vegetative growth was inhibited during the stress assays, and strong defoliation levels were reported, especially in Fino lemon. In both species, bud sprouting was induced after re-watering. Flowers and vegetative shoots developed in Owari satsuma after a drought period, and the development was independent of the stress level. In Fino lemon, vegetative shoots and flowers were primarily formed after moderate and severe stress, respectively. The photosynthetic rate and stomatal conductance were reduced by water stress, and a marked increase in water-use efficiency at the moderate water deficit level was observed. Nevertheless, the photosynthetic apparatus was not damaged, since the maximum quantum yield, photosynthetic pigment concentrations and Rubisco level and activity did not change. Furthermore, the measured malonyldialdehyde (MDA) and peroxidase activity indicated that oxidative stress was not specifically triggered by water stress in our study. Therefore, the gas exchange, fluorescence and biochemical parameters suggested that diffusional limitations to photosynthesis predominated in both of the studied Citrus species, and explained the rapid recovery of the photosynthetic parameters after rehydration. The net CO 2 fixation rate and stomatal conductance were recovered within 24 h in Fino lemon, whereas 3 days were required in Owari satsuma. This suggests the presence of some metabolic limitations in the latter species. Furthermore, the sensibility of the defoliation rates, the accumulation of proline and the stomatal behaviour in response to water stress indicated a higher drought tolerance of Fino lemon, according to its better acclimation to hot climates. © 2011 Springer-Verlag.The authors thank Dr. J. Moreno and co-workers from the Departamento de Bioquimica of the Universidad de Valencia for his help and support in the Rubisco assays, and Dr. F. Fornes, Dr. A. Calatayud and Dr. E. Primo-Millo for the critical review of the manuscript. This work was funded by the Universitat Politecnica de Valencia, Spain (Ayudas para primeros proyectos de investigacion PAID06-06).Ávila ResĂ©ndiz, C.; Guardiola Barcena, JL.; GonzĂĄlez Nebauer, S. (2012). Response of the photosynthetic apparatus to a flowering-inductive period by water stress in Citrus. Trees - Structure and Function. 26(3):833-840. https://doi.org/10.1007/s00468-011-0657-4S833840263Addicott FT (1982) Abscission. University of California Press, BerkeleyBajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus. Plant Sci 137:131–142Barbera G, Fatta-del-Bosco G, Lo-Cascio B (1985) Effect of water stress on lemon summer bloom: the Forzatura technique in the Sicilian citrus industry. Acta Hortic 171:391–397Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Cassin J, Bourdeaut A, Fougue V, Furon V, Gaillard JP, LeBourdelles J, Montagut G, Moreuil C (1969) The influence of climate upon blooming of Citrus in tropical areas. Proc Int Soc Citrus 1:315–323Castel JR, Buj A (1990) Response of Salustiana oranges to high frequency deficit irrigation. Irrig Sci 11:121–127Chaikiatitiyos S, Menzel CM, Rasmussen TS (1994) Floral induction in tropical fruit trees: effects of temperature and water supply. J Hortic Sci 69:397–415Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560Costa JM, Ortuño MF, Chaves M (2007) Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J Integr Plant Biol 49:1421–1434Davenport TL (1990) Citrus flowering. Hortic Rev 12:249–408Davies FS, Albrigo LG (1994) Citrus. CAB International, Wallingford, pp 126–134Domingo R, Ruiz-SĂĄnchez MC, SĂĄnchez-Blanco MJ, Torrecillas A (1996) Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation. Irrig Sci 16:115–123Erismann ND, Machado EC, Tucci MLS (2008) Photosynthetic limitation by CO2 diffusion in drought stressed orange leaves on three rootstocks. Photosynth Res 96:163–172Flexas J, Bota J, GalmĂ©s J, Medrano H, Ribas-CarbĂł M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352GallĂ© A, Florez-Sarasa I, Tomas M, Pou A, Medrano H, Ribas-CarbĂł M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390GalmĂ©s J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterrenean plants with different growth forms. New Phytol 175:81–93GarcĂ­a-Luis A, Kanduser M, Santamarina P, Guardiola JL (1992) Low temperature influence on flowering in Citrus. The separation of inductive and bud dormancy releasing effects. Physiol Plant 86:648–652GarcĂ­a-SĂĄnchez F, Syvertsen JP, Gimeno V, BotĂ­a P, PĂ©rez-PĂ©rez JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol Plant 130:532–542Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92GĂłmez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:401–408Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–190Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station Circular no. 347, p 32IPCC (2001) Climate change 2001. In: Houghton JT (ed) The scientific basis. Cambridge University Press, CambridgeLawlor DW (1995) The effects of water deficit on photosynthesis. In: Smirnoff N (ed) Environment and plant metabolism. Bios Scientific Publishers, Oxford, pp 129–160Lichtenthaler HK, Buschmann C (2001) Current protocols in food analytical chemistry, F4.2.1 and F4.3.1. John Wiley and Sons, Inc, NJLorimer GH, Badger MR, Andrews TJ (1977) D-Ribulose-1, 5-bisphosphate carboxilase-oxigenase. Improved methods for activation and assay of catalytic activities. Anal Biochem 78:66–75Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205–214Nir I, Leshem B, Goren R (1972) Effects of water stress, gibberellic acid and 2-chloroethylammoniumchloride (CCC) ob flower differentiation in Eureka lemon trees. J Am Soc Hortic Sci 97:774–778Peñarrubia L, Moreno J (1988) Ribulose 1, 5-bisphosphate carboxylase oxygenase from citrus leaves. Phytochemistry 27:1999–2004PĂ©rez-PĂ©rez JG, Syvertsen JP, BotĂ­a P, GarcĂ­a-SĂĄnchez F (2007) Leaf water relations and net gas exchange responses of salinized carrizo citrange seedlings during drought stress and recovery. Ann Bot 100:335–345PĂ©rez-PĂ©rez JG, Robles JM, Tovar JC, BotĂ­a P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas Exchange. Sci Hortic 122:83–90Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179Ruiz-SĂĄnchez MC, Domingo R, SavĂ© R, Biel C, Torrecillas A (1997) Effects of water stress and rewatering on leaf water relations of lemon plants. Biol Plant 39:623–631Sarris D, Christodoulakis D, Körner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Chang Biol 13:1187–1200Sharkey TD (1990) Water-stress effects on photosynthesis. Photosynthetica 24:651Southwick SM, Davenport TL (1986) Characterization of water stress and low temperature effects on flower induction in Citrus. Plant Physiol 81:26–29Spiegel-Roy P, Goldschmidt EE (1996) Biology of Citrus. Cambridge University Press, Cambridge, pp 131–136Syvertsen JP, Lloyd J (1994) Citrus. In: Schaffer BA, Andersen PC (eds) Handbook of environmental physiology of fruit crops. Vol II Subtropical and tropical crops. CRC Press, Boca Raton, pp 65–99Syvertsen JP (1996) Water stress and carbon budgets. Proc Int Soc Citrus 1:46–50Valladares F, Arrieta S, Aranda I, Lorenzo D, SĂĄnchez-GĂłmez D, Tena D, Suarez F, Pardos JA (2005) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Illex aquifolium in continental Mediterranean sites. Tree Physiol 25:1041–1052Vu JCV, Yelenosky G (1988) Solar irradiance and drought stress effects on the activity and concentration of ribulose bisphosphate carboxylase in ‘Valencia’ orange leaves. Isr J Bot 37:245–25

    Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary)

    Get PDF
    Vegetation-environment relationships were investigated in a large doline of the Mecsek Mts (South Hungary). To reveal the vegetation pattern, we collected vegetation data and environmental variables along a 243 m long transect. Atotal of 144 vascular plant species and 4 vegetation types were identified in the doline.We found that both the species composition and the vegetation pattern are significantly influenced by air temperature, air humidity, soil moisture and altitude. Our results confirm the putative temperature and vegetation inversion in the doline

    Species composition and diversity of natural forest edges: edge responses and local edge species

    No full text
    Habitat boundaries in general and forest edges in particular belong to the central issues in ecology. Theories about community and environmental edge-responses are diverse, but there is a lack of sufficient supporting field evidence: no consensus exists about distinctness and diversity of edges, and the existence of edge-related species. Moreover, as most studies focus on man-made edges, natural forest edges are less understood. We studied xeric forest edges in a wooded-steppe area. Twelve forest patches were selected, and plots were set up within the edges, the forest interiors and the grasslands. Species composition, species richness and Shannon diversity were compared between the three habitat types as well as between differently oriented edges. We identified diagnostic species for all habitats. Local habitat preferences of the edge-related species were compared to their regional preferences. Environmental factors of the different habitats were assessed by using ecological indicator values. Forest edges differed both from forest interiors and grasslands, forming a narrow but distinct habitat type between them. Species composition of the edges was not simply a mixture of forest and grassland species, but there were several edge-related species, most of which are regionally regarded as typical of closed steppe grasslands. Neither shady conditions of the forests, nor dry conditions of the grasslands are tolerated by these species; this is why they are confined to edges. Species richness and Shannon-diversity were higher within edges than in either of the habitat interiors. Ecological indicator values suggested that light intensity and temperature were higher in the edges than in the forests, but were lower than in the grasslands. In contrast, soil moisture was lower in the edges than in the forests but was higher than in the grasslands. There were slight differences between differently exposed edges concerning species composition, species richness and Shannon diversity. We conclude that edges should be considered an integral part of wooded-steppes. Their high diversity may have nature conservation implications. Our study emphasizes that edge species may be confined to edges only locally, but may have a broader distributional range in other areas. These species may be referred to as local edge species. Our results also point out that the very same edge can be interactive and non-interactive at the same time, depending on the characteristics considered

    Comparison between multiplex PCR and phenotypic systems for Candida spp. identification.

    No full text
    This study evaluated the performances of three phenotypic systems (RapID Yeast panel, Vitek2 YST card, and API 20 C AUX) and multiplex PCR for Candida spp. identification. Four-hundred and fifty clinical strains of Candida spp. were identified with the four systems and results of multiplex PCR were compared with those of phenotypic methods. The best correspondence was obtained between Multiplex PCR and API 20 C AUX (83.7%), but the other comparisons showed similar values (81.7% and 79.3% for Vitek2 and RapID Yeast panel respectively). The correspondence was lower for all the methods in identification of C. krusei; this may be of concern in addition to the azole resistance and the often endogenous origin of this yeast. In the comparison with the three phenotypic methods, multiplex PCR could be reliable and time-saving in the identification of Candida spp. for diagnostics purposes. Nowadays, a large variety of both traditional and molecular methods for Candida spp. identification are commercially available. Multiplex PCR applied in this study may be more rapid and sensitive than phenotypic systems, and less expensive than other molecular methods
    • 

    corecore