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Introduction

As a result of anthropogenic stresses and disturbances, 
ecosystems frequently undergo transformations leading to the 
decline of biodiversity. Global climate change is increasingly 
becoming a key driver of ecosystem changes, but we largely 
lack truly long term data about these processes, mostly be-
cause of the relatively recent recognition of the need for such 
studies. Ecological monitoring programs and the resulting 
long-term datasets (Magurran et al. 2010, Thomsen et al. 
2012) are essential for discovering the species’ response to 
ongoing environmental change and generating quantifiable 
evidence of conservation successes in preventing negative 
impacts of projected changes in climate (Lindenmayer et al. 
2012). Monitoring programs could be based on either long-
term ecological studies or on assessment of the effects of 
stress or disturbance (see Elzinga et al. 2001). 

Ants are regarded as one of the invertebrate taxa which 
are especially suitable for ecological monitoring and indica-
tion studies (see e.g., Agosti et al. 2000 for a book on ant 
monitoring). Besides their indication similarity to several 
invertebrate groups, they have high density, considerable 
biomass, suitable species number and they are also active 
‘ecosystem engineers’ (Folgarait 1998). Moreover, ants are 

sensitive indicators of environmental and ecosystem changes 
(Andersen 2010). Another advantage of this group is that dis-
persing propagula (winged females and males) can easily be 
distinguished from already successfully settled population 
units, i.e., colonies with workers. 

As ants are sensitive indicators, one can expect that many 
long-term studies dealing with ant communities’ reactions to 
climate change have been published. However, as Dunn et al. 
(2009) pointed out, studies focusing on the relationship be-
tween climate change and long-term ant community dynam-
ics are scarce and mostly restricted to the distribution of inva-
sive species (e.g., Levia and Frost 2004, Roura-Pascual et al. 
2004, Morrison et al. 2005, Suarez et al. 2010, Bertelsmeier 
et al. 2016). Therefore, research on the reaction of non-in-
vasive ant species or assemblages to climate change can be 
regarded as stopgap studies. 

Climate change is a well-known, world-wide process, but 
the intensity of its effects differs from region to region. The 
particular site selected for this study is in Kiskunság (central 
Hungary, Carpathian Basin, Pannon Ecoregion), where global 
warming has especially intensive consequences: the original 
temperate climate is gradually transforming into semi-arid 
type and the depletion of the groundwater table is faster than 
in other regions of the Carpathian Basin and these trends con-
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tinued during the period of present study (Rakonczai 2011, 
Rakonczai and Ladányi 2012, Rakonczai and Fehér 2015, 
Ladányi et al. 2015). Therefore, it is a suitable location for 
studying the ecological effects of climate change.

The general aim of the present study was long-term moni-
toring of ant community dynamics in a changing climate. The 
main objectives were: (i) trend monitoring of ants over a 37-
year period on the level of single-species populations and 
their collectives grouped on the basis of coordinated coexist-
ence in different habitat patches and (ii) to seek correlations 
between population trends and elements of climate change.

Materials and methods 

Study site

The study was carried out on a sandy grassland near the 
village Bugacpusztaháza in the Kiskunság National Park, 
central Carpathian Basin (N 46.696414, E 19.603203, see 
also Gallé et al. 2014). The original vegetation of the region 
was forest-steppe, consisting of solitary trees and smaller 
or larger patches of forest surrounded by grasslands where 
dead twigs, barks and logs fallen from trees provided nest-
ing shelters for both forest and grassland ants. The particular 
study site consisted of small dunes, not higher than 3.5 m, 
with dry sandy soil and sparse vegetation, and between-dune 
slacks with more humid soil and denser vegetation. From the 
ca. 5000 ha pasture, a 2.4 ha plot was isolated by fencing 
in 1976 to exclude grazing and other disturbing factors. The 
isolation resulted in a secondary succession process starting 
from grazed condition, characterized by Potentilla arenaria 
and Festuca pseudovina, approaching a natural state of the 
vegetation. For the purpose of the present study, I selected 

a dune ridge and a slack, where the vegetation succession 
was in the terminal grassland stage without trees and natu-
ral shelters. The vegetation on the dune ridge is open grass-
land predominated by Festuca vaginata, Stipa borysthenica, 
Euphorbia segueriana, Dianthus serotinus and in dryer years 
Stipa capillata and Secale sylvestre. The slack vegetation 
is characterized by Molinia hungarica, dwarf Salix repens 
ssp. rosmarinifolia bushes with Festuca pseudovina and 
Potentilla arenaria at the edges of the slack.

Altogether 30 ant species have been published from 
the study plot (Gallé and Szőnyi 1988, Kanizsai et al. 
2009). On the basis of their ecological characters and habi-
tat preferences, these species could be classified into three 
groups: (1) thermophilous and drought tolerant species of 
the dune tops (predominant species are Lasius psammophi-
lus and Plagiolepis taurica, the third characteristic species 
is Formica cunicularia with lower density, see Gallé 1980); 
(2) slightly more hygrophilous species occurring in dune 
slacks (Lasius niger, Myrmica schencki, Formica saguinea, 
Formica rufibarbis) and (3) species of habitats transitional 
either in secondary succession or that are in belts between 
dunes and slacks (Tetramorium cf. caespitum, Tapinoma sub-
boreale, Lasius bombycina).

Nest density estimation

Two grids of slate plates as artificial nesting sites were 
used to estimate the density of ant nest. In 1981, 40 slate 
plates, sized 40 cm × 40 cm × 0.3 cm, were placed on the 
dune top and another 40 plates in the dune slack (Fig. 1), 
and were left there until 2017. During the whole period only 
broken ones were replaced. All slates were of the same type 
(“TÜZÉP 40x40 síkpala”). The slates were arranged in a grid 

Figure 1. Positions of slate 
plate grids. 
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and the distance between adjacent plates was 50 cm; there-
fore, an ant colony could easily reach and occupy any of them. 

I measured the temperature under the slates, at 5 cm depth 
in the soil at 15 cm distance from the edge of the slates, at 1 
m heights in the air and ~3 cm above the soil surface in herb 
layer 27 times with at least five replicates using Testo 925 
digital thermometers.  

Ants colonized the soil under the slates in spring and, to 
a lesser extent, also in autumn, because the temperature there 
exceeded that of the ambient soil. The temperature differenc-
es (mean: 9.22ºC, nobservations = 135, SE= 0.39) were significant 
in all observations (Student’s t-test, p < 0.001 in most cases). 
The raised temperature under the slates did not influence that 
of the neighbouring soil. As the temperature under the plates 
was too high during summer, ants left and recolonized them 
again in autumn and/or in the next spring after overwintering 
deep in the soil. The ant colonies presumably survived for 
several years and new ones were also established during the 
study period. 

A total of 51 observations were carried out during the 
37 years, during which 4080 slates were checked. The colo-
nies were counted and identified by lifting the slates, which 
caused only a slight disturbance without destroying the nests. 
I regarded big groups of individuals with nest galleries, en-
trances and/or brood as colonies. As the occupation frequency 
was higher in spring than in autumn, I considered only spring 
data in further analysis (>85% of all observations). Due to 
technical reasons, there was no appreciable census in seven 
years, while in certain years more than one observation was 
performed at different temperatures to detect the highest oc-
cupation and its dependence on temperature. The highest 
occupation rate was between 9 and 15ºC air temperature, 
and between 8 and 13ºC soil temperature, respectively, cor-
responding to the temperature range of 18-26ºC under the 
slates. The results of observations with the highest occupation 
rates were considered for further analysis.  

During the observations I identified the ant species occu-
pying the plates and counted the number of their nests under 
each plate. The frequency of species groups is given as a sum 
of nests of the ant species belonging to the group in question. 
Changes of species populations were analysed for the most 
frequent species

Environmental predictors

Out of the environmental variables, I analysed the po-
tential effect of the annual mean temperature (te), the annual 
rainfall (rf) and the level of ground water table (wt) on ant 
population changes.  As the ant colonies survived permanent-
ly, it was reasonable to choose annual means. To model popu-
lation changes I respectively took into account these three 
environmental predictors one, two and three years before the 
year of a given spring observation. Environmental conditions 
of the given year were only considered by the single variable 
ground water level, since values of the other variables were 
largely influenced by weather conditions occurring after the 
spring observations. Environmental data were obtained from 

Rakonczai 2011, Rakonczai and Ladányi 2012, Ladányi et 
al. 2015 (for wt) and the Hungarian Meteorological Agency 
(www.met.hu, for te and rf).     

Statistical treatments

In most cases, the traditional and usual statistics were 
sufficient for data evaluation. I employed the non-parametric 
Mann-Kendall test (Gilbert 1987, Elzinga et al. 2001) to ana-
lyse population trends.

Depending on the distribution of variables, either 
Pearsons’ product-moment correlation or Sperman’s rank 
correlation was applied as a measure of intensity of pairwise 
association between trends of ant populations and potential 
environmental variables. I tested the quantitative change of 
the studied ant populations with respect to the presumed en-
vironmental variables with linear models (LM) and multiple 
correlation analysis. A stepwise model selection was carried 
out with Akaike criterion and only the selected versions occur 
in Table 2. For these statistics, the distribution of residuals 
was investigated with QQ plot. Most of computations were 
done with R version 3.1.2. (R Core Team 2014).      

Results

Density of ant nests

I recorded a total of 2813 nests of 11 ant species under 
the plates in 4080 individual slate checks between 1981 and 
2017.

The total number of nests observed under slates on one 
observation occasion varied between 57 and 114 from the 
second year of observations, with an average of 85.28 and 
a coefficient of variation of 0.18. Relating these data to the 
whole area where slates were used, 1.56 nest/m2 mean ant 
nest density was obtained. The first year’s figure was only 
42 nests, presumably because of the disturbance caused by 
laying the slates (Fig. 2). The number of all ant nests slightly 
increased (Mann-Kendall statistics ZMK = 3.58, p = 0.0003) 
during the observation period with a slope of 0.83. 

Temporal trends of ant species groups and populations

The percentage ratios of the original dune top, dune 
slack, and transitional species groups for the whole study 
period were 75:4:21, respectively, considering only the first 
four years they were 65:16:19, while in the last 4 years 92:0:8 
(Fig. 3).

Significant increasing tendency was observed in the case 
of the dune top species group (Mann-Kendall ZMK = 4.41, 
p < 0.0001), while the trend of slack group was negative 
(Mann-Kendall ZMK = 17.44, p < 0.0001) and species of the 
latter group disappeared from the sampled slack by the end of 
the study (Fig. 3). The trend of transitional group, occurring 
mostly in the slack during the study period, was not signifi-
cant (ZMK = 0.104, ns), but also had a decreasing tendency.
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Population trend analyses at the species level (Table 1) 
have shown that the increase of dune top species group is 
due to the dynamics of Plagiolepis taurica (slope of change: 
1.45), while the population of the other predominant species 
of the same group, Lasius psammophilus performed a mod-
erate decreasing trend (slope: -0.20).  P. taurica was absent 
from the dune slack at the beginning, but later on its nest den-
sity gradually increased there, too (ZMK = 5.65, p < 0.0001, 
Fig. 4), whereas the density of L. psammophilus nests did not 
tend either to increase or to decrease significantly (ZMK = 
0.86, ns) in the slack.

Thus, the original spatial structure of the ant community 
changed in the studied plots. The populations of the original 
species group of the slack (Lasius niger, Formica sanguinea, 
Myrmica schencki, Formica rufibarbis) completely disap-
peared. Plagiolepis taurica colonized the dune slack, too, and 
associated there with the transitional species (Tetramorium 
cf. caespitum and Tapinoma subboreale) and so did Formica 
cunicularia. Only L. psammophilus and P. taurica remained 
as predominant populations on the dune tops by the end of 
the study period.

The NMDS ordination of whole assemblage in the con-
secutive study periods with the Renkonen similarity function 
(Fig. 5) shows that community-level change was a more or 
less continuous process without intensive reversion, as the 

Table 1. Mann-Kendall trend analysis of the most common popu-
lations

Species ZMK n p direction 
of trend

Formica  
cunicularia 15.21 30 < 0.0001 decrease

Lasius  
psammophilus 2.9 30 < 0.0001 slight 

decrease
Plagiolepis  
taurica 4.86 30 < 0.0001 increase

Tetramorium cf. 
caespitum 0.38 30 6.621 no trend

Tapinoma  
subboreale 0.72 30 0.553 no trend

Lasius niger 24.89 30 <0.0001 decrease

28 
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Fig. 2. Total number of ant nests under slates in function of time. Dashed line shows 
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Fig. 3. Temporal dynamics of species groups characteristic to different habitat patches  
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Fig. 5. NMDS ordination of sampled ant assemblages during the project period. 

Numbering indicates consecutive observations.   

 

Figure 5. NMDS ordination of sampled ant assemblages during 
the project period. Numbering indicates consecutive observa-
tions.
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first axis of the ordination plot is correlated with the sequence 
of observations (r = 0.80; p < 0.0001). 

Effects of environmental variables

Out of the three studied environmental variables, the 
level of ground water table seems to be the most important 
predictor affecting ant population dynamics (Table 2). The 
population trends of Plagiolepis taurica were in negative re-
lationship with the height of ground water table and it was the 
case with Tetramorium cf. caespitum, too. All other signifi-
cant relations with ground water table height were positive, 
even in the case of Lasius psammophilus, which is a typi-
cal dune-top ant. No significant relationship was observed in 
Tapinoma subboreale. 

Discussion

As it was stated in the Introduction, ants are regarded as 
suitable objects for ecological monitoring (Agosti et al. 2000, 
New 2000, Andersen et al. 2004, Underwood and Fisher 
2006) because of their easy sampling and sensitive indica-
tor character (Andersen 1997, Andersen and Majer 2004, 
Hoffmann and Andersen 2004, Hodkinson and Jackson 2005, 
Hoffmann 2010). Monitoring handbooks and manuals (e.g., 
Elzinga et al. 2001, Hill et al. 2005), however, frequently dis-
regard ants as an invertebrate reference group. It could partly 
be due to the only difficulty of ant sampling, that their popu-
lations are built up of two units, i.e., individuals and colo-
nies. The majority of the above cited works on ant monitoring 
and even the methodological ones (e.g., Alder and Silverman 
2004, King and Porter 2005, de Souza et al. 2012) are re-
stricted to sampling individuals staying outside the nests. A 
review by Underwood and Fisher (2006) shows that only 9 
out of 58 studies of  conservation monitoring dealt with “gen-
eral sampling”, which could involve nest sampling, although 
papers emphasized its significance already from the 1970s 
(Baroni-Urbani et al. 1978, Gallé 1972, 1986). A combination 
of the two sampling techniques is also possible (Vepsäläinen 
et al. 2000). The main drawback of nest sampling could be 
that the excavation of the soil surface is necessary to reveal 
all nests in the majority of habitats types, especially in grass-
lands. However, it is an intensive disturbance threatening the 
survival of colonies, therefore it makes repeated sampling for 
continuous monitoring impossible. 

We employed slates as artificial shelters to perform nest 
sampling. The procedure of checking for the presence of ant 
nests by lifting the slates, is a slight disturbance, that does not 
damage ant colonies, therefore viable for longer term moni-
toring. Although ant colonies disappeared from under the 
slates after the observations, they returned within hours or at 
most within 3-5 days, performing faster colony movements 
than published from different sites and situations (Smallwood 
1982, Smallwood and Culver 1979, Briano et al. 1995). The 
sampling technique described in the present paper is not at 
all new. M. V. Brian first used slates as artificial nesting sites 
for ants already in 1952 (Brian 1952). Later, M. G. Nielsen 
applied concrete bricks for the same purpose, similarly in 

a sand-dune site (Nielsen, personal communication). Other 
types of artificial nest sites were used by Young (1986) and 
Herbers and Banschbach (1995).

Regarding the pros and cons, I recommend applying ar-
tificial nesting shelters for the long-term monitoring of ant 
colonies, especially in open habitats. Slate plates of similar 
size used in this study are especially suitable for this purpose 
because they are light enough to handle and sufficiently large 
to provide nesting shelters. Gallé et al (2014) found lower oc-
cupation frequency using 10 cm ×10 cm slates. Calibration of 
temperature range for highest occupation helps to select the 
optimal period for observation even on the basis of macrosyn-
optic whether forecast by meteorological agencies. 

From the viewpoint of this study, it is an important ques-
tion whether slates were really attractive for the ants or the 
nests occurred under them only by chance, with the same 
probability as in any other part of an identical area of the 
same habitat (see also Gallé et al. 2014). I did not estimate the 
density of nests among the slates during the study period to 
avoid heavy disturbance by soil excavation. Former nest den-
sity estimations via excavation showed that the mean density 
of ant nests was 1.45 nests/m2 in the neighbouring parts of the 
same habitat (Gallé 1980). This is comparable to the figure 
assessed from the average occupation of slates by the present 
study (1.56 nests/m2), indicating that during the spring obser-
vation periods nearly all of the nests were under slates. 

Another problem is whether large nests occupy more 
than one slate. This problem was discussed by Gallé et al. 
(2014) for the quasi polydomous L. psammophilus, which es-
tablishes large colonies, the stations of which could occupy 
several nesting sites (Nielsen 1972, Gallé 1980). However, on 
the basis of results obtained in earlier density estimations by 
nest excavation (Gallé 1978, 1980, 1991), it is unlikely that 
L. psammophilus established brood chambers in more than 
one shelter. Therefore, the number of slates with the pres-
ence of brood or exuvia of pupae could well correspond to 
the number of nests of L. psammophilus. Single colonies of T. 
cf. caespitum and Formica species could occupy two, three or 
even more neighbouring slates in the dune slack. That could 
lead to a slight overestimation of density (1.56 > 1.45, see 
above), but as it was possible to correct this source of error 
in most cases already during the field observations, I assess 
that it did not mean more than one or two nests plus in one 
year. Data from years when the number of nests exceeded the 
number of slates indicate plesiobiosis (see Gallé et al. 2014).

Ranges of population fluctuations reported in other long-
term and monitoring studies (see Agosti et al. 2000), focused 
on the dynamics of individuals (i.e., ant workers), exceeded 
the range of fluctuations presented here. In a 8-yr long con-
tinuous period of worker based ant monitoring in the same 
habitat, we collected a total of 454248 ant workers with 70 
pitfall traps between 1981 and 1988 (Gallé et al. unpublished) 
and the all-population between-year CV was 0.54, much 
greater than in the present study, based on ant nests (0.18). 
Papers based on colony counting (Chew 1995, Chew and De 
Vita 1980, Keeler 1993, Brown et al. 1997, Klimetzek 1981, 
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Klimetzek et al. 2013), however, described fluctuations of 
similar or even smaller magnitude in different habitats.

The majority of publications on the effect of climate 
change on ants, either in geographical or in local ecologi-
cal scales, deal with the distribution and spread of invasive 
ant species (Chen 2008, Espadaler and Gómez 2003, Roura-
Pascual et al. 2004, Hartley et al. 2006, 2010, Sutherst and 
Maywald 2005, Ward 2007, Bertelsmeier et al. 2016). As no 
occurrence of invasive ant species has been documented from 
the studied habitat in question, I am not discussing the results 
of the present paper in the light of those studies, although 
local density increase of Plagiolepis taurica, which is a ther-
mophilous and drought tolerant species, is similar to the ex-
pansion of invasive ant species on larger scales.

In studies of different species and communities, several 
results demonstrated the effects of temperature on species 
diversity and other ant community characteristics.  In a se-
ries of different habitats, Jenkins et al. (2011) found that tem-
perature was the most important single predictor of global 
ant species density. Likewise, Botes et al. (2006) showed 
that temperature explained significant proportions of the 
variation in species density and abundance in the Northern 
Cape Floristic Region, South Africa. Moreover, results of the 
study by Machac et al. (2011) highlighted the potential role 
of environmental temperature, together with niche constraints 
and competition in shaping broad-scale ant diversity gradi-
ents. Sanders et al. (2003), however, suggested that in arid 
ecosystems, besides lower temperatures, higher precipitation 
also supports species richness for some taxa. In the present 
study, the temperature proved to be the second most effec-
tive environmental variable (Table 2). Segev (2010) empha-
sized the significance of precipitation in sandy dune habitats 
of Israel, where no correlation was found between tempera-
ture and ant species richness, whereas annual precipitation 
and species richness showed a significant unimodal pattern. 
In North-American dry habitats, long-term census data from 
populations of different species showed that precipitation in-
fluences the survivorship of ant colonies with one-year time 
lag (Sanders and Gordon 2004). I found few cases when the 
effect of precipitation was significant with two- or three-year 
time lags (Table 2).

Table 2 shows that the level of the groundwater table in-
fluenced the population trends in most cases. If significant 
relationships were observed between population trends and 
environmental variables, the level of groundwater table was 
always at least one of the significant variables. Therefore, it 
can be regarded as the most important environmental condi-
tion for the long-term dynamics of ant colonies. The effect of 
groundwater table on ants is assumed by several authors, both 
in sand dune complexes (Boomsma et al. 1982 and Bonte et 
al. 2003) and in other habitats (Mabelis and Chardon 2006, 
Cardoso et al. 2010 and Budianta et al. 2015). Tschinkel et 
al. (2012) gave the most accurate and detailed analysis of the 
effect of the groundwater table together with other factors on 
the distribution of ant species in north Florida pine flatwoods.

The region of the studied site (Kiskunság) is especially 
exposed to climate change; it is gradually transforming into a 

semi-desert. World-wide desertification has usually been at-
tributed primarily to human activity, especially to livestock 
grazing, and secondarily to changes in climate, especially to 
prolonged and recurrent drought (Brow et al. 1997 and ci-
tations therein). The process of desertification is associated 
with the homogenization of habitats and the decline of habi-
tat complexity, which has a significant negative effect on ant 
diversity both in successional sand-dune complexes (Gallé 
1994) and in other habitats (Lassau and Hochuli 2004). The 
gradual disappearance of “dune slack” species from study 
plots of the present study during the observation period well 
indicates a serious homogenization process. The slack species 
group is still surviving in decreasing frequency in other, deep-
er, a bit moister slacks of the same grassland (Gallé 1994, 
Kanizsai et al. 2009). 

The increased frequency of the dune-top species group is 
due to local habitat expansion by Plagiolepis taurica, which 
is known from harder soil habitats as well (Gallé et al. 2005 
as P. vindobonensis), therefore it is able to colonize dune 
slacks. The other predominant member of the same group, 
Lasius psammophilus, however, is a typical ant of soft sand 
habitats with open vegetation (see Gallé 1991, Gallé et al. 
1998, Járdán et al. 1993 under the name L. alienus), hardly 
tolerating the harder soil and other concomitant conditions 
of the dune slack, therefore its density did not increase there. 
Another change of species composition is forecasted, as in 
other dry parts of the same grassland with scarce vegetation, 
Cataglyphis aenescens has appeared and joined the dune top 
species group, replacing Formica cunicularia. 

The original spatial structure of ant communities outlined 
in this paper has been a general pattern in sand dune areas of 
the Pannon Ecoregion especially in Kiskunság (see Járdán et 
al. 1993, Gallé 1980, 1986, 1994). Community level trans-
formations induced by climate change and especially ground 
water depletion are leading to gradual rearrangement of com-
munities, homogenization of species composition across hab-
itat types and a considerable decline of diversity, threatening 
the fauna of the whole region.
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