411 research outputs found

    Particle-particle random phase approximation applied to Beryllium isotopes

    Full text link
    This work is dedicated to the study of even-even 8-14 Be isotopes using the particle-particle Random Phase Approximation that accounts for two-body correlations in the core nucleus. A better description of energies and two-particle amplitudes is obtained in comparison with models assuming a neutron closed-shell (or subshell) core. A Wood-Saxon potential corrected by a phenomenological particle-vibration coupling term has been used for the neutron-core interaction and the D1S Gogny force for the neutron-neutron interaction. Calculated ground state properties as well as excited state ones are discussed and compared to experimental data. In particular, results suggest the same 2s_1/2-1p_1/2 shell inversion in 13Be as in 11Be.Comment: to appear in Phys. Rev.

    On the Moat-Penumbra Relation

    Get PDF
    Proper motions in a sunspot group with a delta-configuration and close to the solar disc center have been studied by employing local correlation tracking techniques. The analysis is based on more than one hour time series of G-band images. Radial outflows with a mean speed of 0.67 km s^{-1} have been detected around the spots, the well-known sunspots moats. However, these outflows are not found in those umbral core sides without penumbra. Moreover, moat flows are only found in those sides of penumbrae located in the direction marked by the penumbral filaments. Penumbral sides perpendicular to them show no moat flow. These results strongly suggest a relation between the moat flow and the well-known, filament aligned, Evershed flow. The standard picture of a moat flow originated from a blocking of the upward propagation of heat is commented in some detail.Comment: 4 pages, 4 figures, To appear in ApJ Letter

    Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

    Full text link
    We point out a strong influence of the pairing force on the size of the two neutron Cooper pair in 11^{11}Li, and to a lesser extent also in 6^6He. It seems that these are quite unique situations, since Cooper pair sizes of stable superfluid nuclei are very little influenced by the intensity of pairing, as recently reported. We explore the difference between 11^{11}Li and heavier superfulid nuclei, and discuss reasons for the exceptional situation in 11^{11}Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST

    Hundred photon microwave ionization of Rydberg atoms in a static electric field

    Full text link
    We present analytical and numerical results for the microwave excitation of nonhydrogenic atoms in a static electric field when up to 1000 photons are required to ionize an atom. For small microwave fields, dynamical localization in photon number leads to exponentially small ionization while above quantum delocalization border ionization goes in a diffusive way. For alkali atoms in a static field the ionization border is much lower than in hydrogen due to internal chaos.Comment: revtex, 4 pages, 5 figure

    Entropic Fluctuations in Statistical Mechanics I. Classical Dynamical Systems

    Get PDF
    Within the abstract framework of dynamical system theory we describe a general approach to the Transient (or Evans-Searles) and Steady State (or Gallavotti-Cohen) Fluctuation Theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. Besides its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.Comment: 72 pages, revised version 12/10/2010, to be published in Nonlinearit

    A meaningful expansion around detailed balance

    Full text link
    We consider Markovian dynamics modeling open mesoscopic systems which are driven away from detailed balance by a nonconservative force. A systematic expansion is obtained of the stationary distribution around an equilibrium reference, in orders of the nonequilibrium forcing. The first order around equilibrium has been known since the work of McLennan (1959), and involves the transient irreversible entropy flux. The expansion generalizes the McLennan formula to higher orders, complementing the entropy flux with the dynamical activity. The latter is more kinetic than thermodynamic and is a possible realization of Landauer's insight (1975) that, for nonequilibrium, the relative occupation of states also depends on the noise along possible escape routes. In that way nonlinear response around equilibrium can be meaningfully discussed in terms of two main quantities only, the entropy flux and the dynamical activity. The expansion makes mathematical sense as shown in the simplest cases from exponential ergodicity.Comment: 19 page

    Dual-frequency VECSEL for atomic clocks using coherent population trapping

    No full text
    Workshop on Laser Diodes for Space Applications, Nov 2015, Palaiseau, FranceAtomic frequency references provide high-precision stable signals, which are crucial in the most demanding applications as high bitrate communication networks, high-end inertial navigation, or satellite positioning. One way to obtain those laser fields with low intensity-and frequency-noise is to use the dual-frequency and dual-polarization emission of an optically-pumped vertical external-cavity semiconductor laser (OP-VECSEL)

    Laser à semiconducteur à 852 nm bifrequence pompé optiquement pour les horloges atomiques CPT (poster)

    No full text
    National audienceNous présentons un laser à semiconducteur en cavité externe pompé optiquement, émettant sur deux fréquences optiques polarisées perpendiculairement, destiné au piégeage cohérent d'atomes (CPT) de Cs. L'émission est accordable autour de 852 nm. La différence de fréquence est ajustée grâce à une lame électro-optique autour de 9,2 GHz. La longueur d'onde du mode ordinaire est stabilisée sur la raie D2 du Cs et la différence de fréquence est asservie sur un signal de référence RF. En fonctionnement stabilisé, nous caractérisons les sources de bruits du laser afin d'évaluer les performances du laser en vue de son application dans une horloge atomique CPT

    Evaluation of the noise properties of a dual-frequency VECSEL for compact Cs atomic clocks (Poster)

    No full text
    International audienceWe evaluate a dual-frequency and dual-polarization optically-pumped semiconductor laser emitting at 852 nm as a new laser source for compact atomic clocks based on the coherent population trapping (CPT) technique. The frequency difference between the laser modes is tunable to 9.2 GHz corresponding to the ground state hyperfine-split of Cs. Impact of the laser noise has been investigated. Laser relative intensity noise is limited by the pump-RIN transfer to a level of-110 dB/Hz. Laser frequency noise shows excess mechanical and technical noise resulting in a laser linewidth of 1 MHz at 1 s in lock operation. The noise performance and spectral properties of the laser are already adequate to realize CPT experiments and should result in Allan standard-deviation of the clock below 1 × 10-12 at 1 second

    The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    Get PDF
    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.Comment: 17 figure
    corecore