270 research outputs found

    Identifying Outstanding Transition‑Metal‑Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery

    Get PDF
    In order to estimate the reactivity of a large number of potentially complex heterogeneous catalysts while searching for novel and more efficient materials, physical as well as data-centric models have been developed for a faster evaluation of adsorption energies compared to first-principles calculations. However, global models designed to describe as many materials as possible might overlook the very few compounds that have the appropriate adsorption properties to be suitable for a given catalytic process. Here, the subgroup-discovery (SGD) local artificial-intelligence approach is used to identify the key descriptive parameters and constrains on their values, the so-called SG rules, which particularly describe transition-metal surfaces with outstanding adsorption properties for the oxygen reduction and evolution reactions. We start from a data set of 95 oxygen adsorption energy values evaluated by density-functional-theory calculations for several monometallic surfaces along with 16 atomic, bulk and surface properties as candidate descriptive parameters. From this data set, SGD identifies constraints on the most relevant parameters describing materials and adsorption sites that (i) result in O adsorption energies within the Sabatier-optimal range required for the oxygen reduction reaction and (ii) present the largest deviations from the linear scaling relations between O and OH adsorption energies, which limit the performance in the oxygen evolution reaction. The SG rules not only reflect the local underlying physicochemical phenomena that result in the desired adsorption properties but also guide the challenging design of alloy catalysts

    Hierarchical Symbolic Regression for Identifying Key Physical Parameters Correlated with Bulk Properties of Perovskites

    Get PDF
    Symbolic regression identifies nonlinear, analytical expressions relating materials properties and key physical parameters. However, the pool of expressions grows rapidly with complexity, compromising its efficiency. We tackle this challenge hierarchically: identified expressions are used as inputs for further obtaining more complex expressions. Crucially, this framework can transfer knowledge among properties, as demonstrated using the sure-independence-screening-and-sparsifying-operator approach to identify expressions for lattice constant and cohesive energy, which are then used to model the bulk modulus of ABO3 perovskites

    Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H<sub>2</sub>-Dependent CO<sub>2</sub> Reduction to Metabolic Intermediates

    Get PDF
    Serpentinizing hydrothermal systems generate H2 as a reductant and harbor catalysts conducive to geochemical CO2 conversion into reduced carbon compounds that form the core of microbial autotrophic metabolism. This study characterizes mineral catalysts at hydrothermal vents by investigating the interactions between catalytically active cobalt sites and silica-based support materials on H2-dependent CO2 reduction. Heteroatom incorporated (Mg, Al, Ca, Ti, and Zr), ordered mesoporous silicas are applied as model support systems for the cobalt-based catalysts. It is demonstrated that all catalysts surveyed convert CO2 to methane, methanol, carbon monoxide, and low-molecular-weight hydrocarbons at 180 °C and 20 bar, but with different activity and selectivity depending on the support modification. The additional analysis of the condensed product phase reveals the formation of oxygenates such as formate and acetate, which are key intermediates in the ancient acetyl-coenzyme A pathway of carbon metabolism. The Ti-incorporated catalyst yielded the highest concentrations of formate (3.6 mM) and acetate (1.2 mM) in the liquid phase. Chemisorption experiments including H2 temperature-programmed reduction (TPR) and CO2 temperature-programmed desorption (TPD) in agreement with density functional theory (DFT) calculations of the adsorption energy of CO2 suggest metallic cobalt as the preferential adsorption site for CO2 compared to hardly reducible cobalt–metal oxide interface species. The ratios of the respective cobalt species vary depending on the interaction strength with the support materials. The findings reveal robust and biologically relevant catalytic activities of silica-based transition metal minerals in H2-rich CO2 fixation, in line with the idea that autotrophic metabolism emerged at hydrothermal vents

    Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence

    Get PDF
    The performance in heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes (e.g., the different surface chemical reactions, and the dynamic restructuring of the catalyst material at reaction conditions). Modeling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters (“materials genes”) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of “clean data,” containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design

    Survival Outcomes and Effect of Early vs. Deferred cART Among HIV-Infected Patients Diagnosed at the Time of an AIDS-Defining Event: A Cohort Analysis

    Get PDF
    Objectives: We analyzed clinical progression among persons diagnosed with HIV at the time of an AIDS-defining event, and assessed the impact on outcome of timing of combined antiretroviral treatment (cART).Methods: Retrospective, European and Canadian multicohort study.. Patients were diagnosed with HIV from 1997-2004 and had clinical AIDS from 30 days before to 14 days after diagnosis. Clinical progression (new AIDS event, death) was described using Kaplan-Meier analysis stratifying by type of AIDS event. Factors associated with progression were identified with multivariable Cox regression. Progression rates were compared between those starting early (<30 days after AIDS event) or deferred (30-270 days after AIDS event) cART.Results: The median (interquartile range) CD4 count and viral load (VL) at diagnosis of the 584 patients were 42 (16, 119) cells/mu L and 5.2 (4.5, 5.7) log(10) copies/mL. Clinical progression was observed in 165 (28.3%) patients. Older age, a higher VL at diagnosis, and a diagnosis of non-Hodgkin lymphoma (NHL) (vs. other AIDS events) were independently associated with disease progression. Of 366 patients with an opportunistic infection, 178 (48.6%) received early cART. There was no significant difference in clinical progression between those initiating cART early and those deferring treatment (adjusted hazard ratio 1.32 [95% confidence interval 0.87, 2.00], p = 0.20).Conclusions: Older patients and patients with high VL or NHL at diagnosis had a worse outcome. Our data suggest that earlier initiation of cART may be beneficial among HIV-infected patients diagnosed with clinical AIDS in our setting

    po 472 chemotherapy resistance associated epithelial to endothelial transition in gastric cancer

    Get PDF
    Introduction Gastric cancer (GC) is the fifth most common cancer worldwide and the third leading cause of cancer-related deaths. To date, gastrectomy and chemotherapy are the only therapeutic options, but drug resistance is the main cause for treatment failure. Vasculogenic mimicry (VM) is a new model of neovascularization in aggressive tumours and has been correlated with poor prognosis in GC patients. Our group has developed chemotherapy-resistant GC cells using the Caucasian adenocarcinoma cell line AGS and three drugs among the most used in clinic (5-fluorouracil, cisplatin and paclitaxel) henceforward denominated 5FUr, CISr, TAXr. Our study has highlighted phenotypical differences among chemo-sensitive and chemo-resistant cell lines such as acquisition of stem-like phenotype and increased capacity to form vessels. Material and methods Establishment of AGS resistant cell lines exposing cells to increasing dilution of drugs for over 9 months up to dilutions higher than IC50 values initially verified on AGS cells through MTT analysis. Quantitative RT-PCR, flow cytometry and western blot analysis for stemness and VM markers. Vasculogenic mimicryassay Results and discussions AGS cells acquired chemoresistance as indicated by the increase of IC50 values in drug-treated cells with respect to AGS. Furthermore, MTT assay highlighted that there is not cross-resistance among 5FUr, CISr and TAXr. Supportive data is that cells are MDR1 negative. Resistant cells showed an upregulation of Yamanaka factors either in qPCR and flow cytometer analysis, and particularly interesting is ALDH overexpression in 5FUr. TWIST upregulation suggested the investigation of VM which resulted particularly enhanced in 5FUr cells which demonstrated their ability to form and sustain vessels up to 96 hours in the tube formation assay. Markers of VM such Laminin γ2 and Ephrin A2 showed an increase in resistant cells and especially in 5FUr. Conclusion One of the most interesting result is that 5FUr cells acquire stemness properties and are positive to the tube formation assay suggesting that VM might be one mechanisms adopted by cells to avoid drugs exposure. These findings suggest that acquisition of chemoresistance could cause a relapse of disease in which tumour cells take advantage of their capability to perform VM in order to self-sustain their growth and that may be cause of poor outcomes

    Modeling the cost of influenza: the impact of missing costs of unreported complications and sick leave

    Get PDF
    Background Estimating the economic impact of influenza is complicated because the disease may have non-specific symptoms, and many patients with influenza are registered with other diagnoses. Furthermore, in some countries like Norway, employees can be on paid sick leave for a specified number of days without a doctor's certificate ("self-reported sick leave") and these sick leaves are not registered. Both problems result in gaps in the existing literature: costs associated with influenza-related illness and self-reported sick leave are rarely included. The aim of this study was to improve estimates of total influenza-related health-care costs and productivity losses by estimating these missing costs. Methods Using Norwegian data, the weekly numbers of influenza-attributable hospital admissions and certified sick leaves registered with other diagnoses were estimated from influenza-like illness surveillance data using quasi-Poisson regression. The number of self-reported sick leaves was estimated using a Monte-Carlo simulation model of illness recovery curves based on the number of certified sick leaves. A probabilistic sensitivity analysis was conducted on the economic outcomes. Results During the 1998/99 through 2005/06 influenza seasons, the models estimated an annual average of 2700 excess influenza-associated hospitalizations in Norway, of which 16% were registered as influenza, 51% as pneumonia and 33% were registered with other diagnoses. The direct cost of seasonal influenza totaled US22millionannually,includingcostsofpharmaceuticalsandoutpatientservices.Theannualaveragenumberofworkingdayslostwaspredictedat793000,resultinginanestimatedproductivitylossofUS22 million annually, including costs of pharmaceuticals and outpatient services. The annual average number of working days lost was predicted at 793 000, resulting in an estimated productivity loss of US231 million. Self-reported sick leave accounted for approximately one-third of the total indirect cost. During a pandemic, the total cost could rise to over US$800 million. Conclusions Influenza places a considerable burden on patients and society with indirect costs greatly exceeding direct costs. The cost of influenza-attributable complications and the cost of self-reported sick leave represent a considerable part of the economic burden of influenza
    • …
    corecore