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Symbolic regression identifies nonlinear, analytical expressions relating materials properties and key
physical parameters. However, the pool of expressions grows rapidly with complexity, compromising its
efficiency. We tackle this challenge hierarchically: identified expressions are used as inputs for further
obtaining more complex expressions. Crucially, this framework can transfer knowledge among properties,
as demonstrated using the sure-independence-screening-and-sparsifying-operator approach to identify
expressions for lattice constant and cohesive energy, which are then used to model the bulk modulus of
ABO3 perovskites.
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The identification of physical parameters that are corre-
lated with materials properties or functions is a key step for
understanding the underlying processes and accelerating
the discovery of improved or even novel materials [1].
Ideally, one would use physical models to describe the
materials properties of interest [2]. However, due to the
intricate interplay of processes that might be responsible for
a certain materials property, the explicit physical modeling
might be unfeasible, or even inappropriate. An alternative
approach is to use artificial intelligence (AI) to uncover
complex relationships. Nevertheless, most widely used AI
approaches require datasets that are much larger than those
that are typically available in materials science, and only a
few AI methods are well suited for small datasets [3–5].
Furthermore, conventional AI produces blackbox models
that make it difficult to disentangle the contributions from
the various input parameters and determine which under-
lying processes are the most important to optimize. These
problems are exacerbated for the typical scenario in which
one is interested in finding materials that exhibit an
exceptional performance, for which only a few data points
are available.
A possible avenue for linking physical reasoning and

data-centric approaches is symbolic regression (SR) [6–8],
which identifies nonlinear analytical expressions relating a
target property to the key input parameters, even for small
datasets. These input parameters are typically physical

quantities that are possibly related to the underlying
processes governing the property. Traditionally, SR uses
genetic-programming techniques to optimize the analytic
expressions, which are combinations of the input param-
eters using mathematical operators such as addition,
multiplication, exponentiation, etc., for a given problem
[6,7,9–11]. These approaches randomly generate an initial
population of possible expressions, and then stochastically
apply genetic operators (e.g., mutation and crossover) until
some optimal solution is found. More recently, the sure-
independence-screening-and-sparsifying-operator (SISSO)
[12,13] approach was introduced for the identification of
analytical expressions by applying the compressed sensing
methodology [14,15] to SR. The SISSO approach starts
with the collection of physical input parameters, termed
primary features. Then, a more expansive pool of expres-
sions is iteratively built by exhaustively applying a set of
mathematical operators to both the primary features and
previously generated expressions (feature-creation step).
The number of recursive applications of the operators used
to construct the pool of expressions is called the rung (q).
Finally, compressed sensing is used to identify the best D-
dimensional linear model by performing an l0 regulariza-
tion on a subspace S of the all generated expressions, where
S is selected using sure-independence screening [16], with
the Pearson correlation as the projection score. The out-
come of the SISSO analysis is a low D-dimensional
descriptor vector containing, as components, the expres-
sions selected from the pool of expressions. A SISSO-
derived model for a property P has the form

PSISSO ¼
XD

i¼0

cidi; ð1Þ
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where ci are fitting coefficients and di are the descriptor
components. We also label the model components,
αi ¼ cidi, which will be used for the construction of more
complex models.
SR has already been used to model several materials

properties and functions [7,17–23]. However, the combi-
natorial growth of the pool of possible expressions with
respect to the number of primary features and to the number
of times that the mathematical operators are applied can
make an exhaustive search for the optimal descriptors
impractical. This is problematic because in the (initial)
absence of understanding of the underlying processes, one
would like to offer an extensive set of input parameters to
avoid missing the important ones. For addressing this
challenge, we introduce a hierarchical SR approach that
enables an efficient identification of complex descriptors by
keeping the number of expressions considered in the
analysis at a manageable level. The foundation of this
approach is the systematic refeeding of expressions iden-
tified in one step as inputs for the identification of more
complex expressions in subsequent steps. A crucial impli-
cation of this hierarchical framework is that it can be
extended to transfer knowledge learned for one property to
another one, thus also highlighting physical relationships
between materials properties.
We demonstrate the hierarchical SR approach in the

context of SISSO. Hierarchical SISSO (HI-SISSO) starts
with an initial set of primary features, which is used to
obtain an initial model for the property of interest. Then,
the obtained model and its components (PSISSO and αi,
respectively), are evaluated for all the materials in the
dataset and added to the initial primary feature set. Finally,
using this extended primary feature set, new, more complex
models are obtained by applying SISSO for a second time.
Models and components obtained for one (or more)
property (properties) with SISSO can also be used to
model a second, related property.
Additionally, in this Letter, we also introduce a new

concept into SISSO [24], hereafter called “multiple resid-
uals,” which increases the algorithm’s efficiency with
respect to the size of subspaces needed for l0 regulariza-
tion. This procedure updates the SISSO algorithm to use
the residuals of the r best models during the sure-
independence screening step of SISSO, instead of using
the residual of only the best model as done previously [25].
By using the multiple-residual scheme with HI-SISSO, we
are able to expedite the search for the best models and
considerably reduce (optimize) not only the overall size of
the pool of expressions to be considered in the analysis,
but also the size of the subspaces of expressions needed
for the identification of the best descriptors.
We demonstrate the capabilities of HI-SISSO with two

examples, i.e., by modeling the lattice constant (a0) and
bulk modulus (B0) of ABO3 cubic perovskites. First, we
identify models for the lattice constant (a0) of each

material. Then, we exploit the expressions identified for
a0 and cohesive energies (E0, defined as the energy per
atom required to atomize the crystal) to improve the
learning of the bulk moduli (B0) of the perovskites. We
consider 504 ABO3 materials formed by the A and B
elements indicated in Fig. 1. The lattice constants, cohesive
energies, and bulk moduli are calculated using density
functional theory (DFT) with the PBEsol [40] exchange-
correlation functional [25].
Perovskites display a remarkable diversity of composi-

tions and properties that make them interesting for very
different functions and devices (see, e.g., Refs. [41,42]).
We focus here on perovskite mechanical properties, spe-
cifically the equilibrium lattice constant a0 and the bulk
modulus B0, the second derivative of the cohesive energy
E0 at a0. Both quantities are correlated [43–45], which has
been described by Verma and Kummar (VK) [46] for cubic
perovskites:

BVK
0 ¼ C0 þ C1

ðnAnBÞC2

ða0Þ3.5
: ð2Þ

Here,C0,C1, andC2 are fitted constants, and nA and nB are,
respectively, the expected oxidation state of the A and B
species in the ABO3 compound, as approximated by their
group number on the periodic table. The approximation
implies that all alkali and alkaline earth metals will have an
oxidation state of one and two, respectively, and all other A
elements will have an oxidation state of three. The
oxidation state of the B atom is then set to ensure all
materials are charge neutral, i.e., nB ¼ 6 − nA. The expo-
nent for a0 in Eq. (2) comes from physical arguments, as
described in Ref. [44].
As primary features, we use 23 properties related to the A

and B elements of the ABO3 perovskites, hereafter atomic
features. These features represent information about the
radius, charge, electronic energy levels, and oxidation
number for free atoms. The complete list of primary
features and operators used in this problem is provided
in Supplemental Material [25].
In order to evaluate the performance of our models, we

randomly split the dataset of 504 materials into five subsets.
Four subsets are combined and used to train the models
(training set) and the remaining subset is used to assess the

FIG. 1. Materials space of A and B elements corresponding to
the 504 cubic ABO3 perovskites considered in the dataset.
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performance (test set). The training set is used to determine
the optimal model complexity with respect to its predict-
ability via a fivefold cross-validation (CV) scheme. Within
the fivefold CV scheme, the training set is further split into
five subsets. Then, four of these subsets are combined and
used to train the model, while the remaining subset is used
as validation set. This process is repeated until all five
subsets are used as validation sets once and the average of
validation root-mean-squared error across the five CV
iterations (CV RMSE) is used as the performance metric.
The parameters that provide the optimal complexity are
considered those associated to the lowest CV RMSE [25].
Within SISSO, the model complexity is controlled by the
rung q used to construct the pool of expressions and by the
descriptor dimension D. Here we consider descriptors with
D ¼ 1 up to D ¼ 5. Once the model complexity is
determined by CV, a model is trained using all the materials
of the training set at the optimal complexity. This model is
used to predict the properties of the materials in the test set.
Finally, the whole procedure is repeated five times, i.e., so
that each of the five subsets is considered once as test set.
We discuss the performance of the SISSO-derived models
based on the distribution of absolute test errors across the
504 materials. We note that more complex models lead to
lower training errors, but they do not necessarily improve
the performance in terms of test or prediction errors.
The absolute-test-error distributions associated to the

lattice constant models obtained with SISSO using rung
q ¼ 1 and q ¼ 2 are shown as gray and red violin plots in
Fig. 2(a). These violin plots display the density of data
points as a function of their prediction errors. The width of
the violin body reflects the number of test data points with
that error. The distribution of the absolute test errors is
shifted toward lower values when the rung increases from 1
to 2. This shows that the models become more accurate as
the mathematical operators are applied for a second time in
order to generate more complex expressions. With our
primary features and set of operators, rung 1 and 2 pools of
features contain on the order of thousands and millions of
elements, respectively. To demonstrate how complex
descriptors can be found while keeping the number of
considered expressions small, we collect the a0, q ¼ 1

model and its components, and use them as new primary
features, along with the atomic features, in a second step of
SISSO application. In this second step, we also used q ¼ 1.
We refer to the resulting models as HI-SISSOða0Þ in Fig. 2
(a), the parentheses indicating that the expressions describ-
ing a0 identified in the first step are added to the primary
feature set, along with the atomic features, in the second
step.
The absolute test errors associated to the HI-SISSOða0Þ

models [Fig. 2(a), in blue] are lower compared to the errors
of the q ¼ 1 models obtained with one-step application of
SISSO [Fig. 2(a), in gray]. Additionally, the performance of
the HI-SISSOða0Þ models is superior compared with the

SISSO approach with q ¼ 2 [Fig. 2(a), in red]. These
results show that HI-SISSO provides a tractable way of
increasing the effective rung—and thus the complexity—of
a model at a tiny fraction of the computational cost required
for a higher rung, since the pool of expressions that needs to
be treated is 3 orders of magnitude smaller. Furthermore, by
refeeding the models themselves into the primary feature
space, we are able to increase the effective dimension of the
descriptors without the combinatorial explosion associated
with l0 regularization at higher dimensions.
In Fig. 2, we note the presence of outliers for which the

absolute test errors are high with respect to the distribution
average. These data points are associated to materials with
A and/or B elements which are significantly different
compared to the A and B elements in the training sets.
The detailed analysis of test errors is presented in
Supplemental Material along with the discussion of a test
set composed by materials containing chemical elements
which were unseen during training [25].
We next address the bulk modulus of the perovskites.

The distribution of absolute test errors associated to Eq. (2)
(with C0, C1, and C2 fitted to the training sets) is shown in

(a)

(b)

FIG. 2. (a) Distribution of a0 absolute test-set errors for various
sets of hyperparameters (x-axis labels). (b) Distribution of B0

absolute test-set errors for various sets of hyperparameters and
models (x-axis labels). The black “cross mark” represent the
mean absolute error, the orange lines are the median absolute
error, the boxes are the quartiles, and the whiskers are the
minimum and 95% absolute error. In the figure labels, “at. feat.”
stands for atomic features and the star in q ¼ 1� indicates the
reduced set of operators used in the log-regression approach.
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brown in Fig. 2(b) as a baseline for evaluating the
performance of the models derived by SR. For the
SISSO analysis of bulk modulus, we consider rung
q ¼ 2. The absolute-test-error distribution corresponding
to the SISSO models obtained with the atomic features
[Fig. 2(b), in red] shows that this approach has an
improved performance compared to Eq. (2). The model’s
accuracy improves significantly if the DFT-calculated
cohesive energy EDFT

0 , lattice constant aDFT0 ; and
ðaDFT0 Þ−3.5 are also included as primary features [Fig. 2(b),
in violet]. This shows that a0 andE0 are both key parameters
to describe the bulk modulus. Note that ðaDFT0 Þ−3.5 was
explicitly included as primary feature because it is suggested
as an important parameter by Eq. (2). It would be obtained
automatically using q ¼ 3, but this would be numerically
expensive.
The lattice constant and the cohesive energy provide

necessary information to model the bulk modulus.
However, the use of aDFT0 , ðaDFT0 Þ−3.5, and EDFT

0 as primary
features is inconvenient. In order to calculate a0 and E0 in
DFT, one must perform a geometry relaxation, which is
already the majority of the work needed to calculate B0

itself. To circumvent this issue, we offered, as primary
features, the SISSO and HI-SISSO models for a0 and E0

[25]—as well as their components and the rescaled quantity
ða0Þ−3.5—instead of the DFT-calculated quantities. In
this analysis, the atomic features are kept in the primary
feature set. We indicate the resulting B0 models by
HI-SISSOða0; E0Þ in Fig. 2(b) (dark green). By using
the HI-SISSOða0; E0Þ approach, the test errors are signifi-
cantly reduced compared to the one-step application of
SISSO to the atomic features. Indeed, the model perfor-
mance gets closer to that of the models obtained using the
DFT-calculated parameters aDFT0 and EDFT

0 , even though the
HI-SISSOða0; E0Þ models depend only on the atomic
features, which makes it useful to search for new materials.
These results demonstrate the potential of HI-SISSO to
transfer information among materials properties, thus
circumventing the use of resource-consuming primary
features.
We then exploited the B0 model obtained by the HI-

SISSOða0; E0Þ approach, trained using the entire dataset of
504 ABO3 materials, for the screening of new materials
[25]. We evaluated 7308 single (ABO3) and double
perovskite compositions of the type A2BB0O6 constructed
from all the A and B elements in the initial dataset (Fig. 1).
Then, we looked at the materials with the lowest predicted
B0 values, since they are scarce in the training set. This
situation corresponds to the typical scenario in materials
discovery, in which the behavior of interest is associated to
only few of the available observations. Among the 10
materials with the lowest B0 predicted by the HI-SISSO
approach, we identify the double perovskites Cs2ZnBiO6,
Cs2CdBiO6, Cs2CdPbO6, Cs2ZnPbO6, Cs2ZnCdO6,
Rb2ZnBiO6, and Rb2CdBiO6, with predicted B0 in the

range 0.49–0.53 eV=Å3. The properties of these materials
were evaluated explicitly by further DFT calculations and
they were confirmed as highly compressible perovskites,
with DFT-calculated B0 of 0.45, 0.45, 0.46, 0.45, 0.46,
0.60, and 0.41 eV=Å3, respectively. The root-mean-
squared error calculated on the 10 materials with the lowest
predicted B0 is 0.081 eV=Å3. By recalling that the model
was trained on simpler single perovskites, its predictive
ability beyond the training region is remarkable. Moreover,
only 8 materials, out of the 504 used for training, present
B0 < 0.50 eV=Å3. We note that our (HI-)SISSO approach
is learning results of the DFT PBEsol theory. Thus, when
estimating the experimental properties of the perovskites, in
addition to the error of the (HI-)SISSO models to predict
the DFT-calculated perovskite properties, the errors result-
ing from the DFT PBEsol approach should be taken into
account [25].
Finally, we identified with HI-SISSO a power-law-type

expression for B0, in the spirit of Eq. (2). For this purpose,
we applied a logarithm transformation to the property
vector and candidate expressions, and then ran SISSO in
this transformed space. We then backtransformed the
resulting expression in the form of Eq. (1) using expo-
nentiation to get the power-law model shown in Eq. (3).
We offered the atomic features and the SISSO q ¼ 2

models for a0 and E0, denoted aSISSOðq¼2Þ
0 and

ESISSOðq¼2Þ
0 , respectively, as primary features. The compo-

nents of these models are also included in the primary
feature set. Here, we used q ¼ 1 with a reduced math-
ematical operator set containing only the operators addition

and subtraction. The rescaled lattice ðaSISSOðq¼2Þ
0 Þ−3.5 was

not included as primary feature because by this approach
such term will be automatically considered. The best model
identified using the entire dataset of 504 materials at the
optimal dimensionality identified via CV (D ¼ 3 [25]) is

BHI-SISSO
0 ¼2.99

ðIPB−EABÞ0.419ðESISSOðq¼2Þ
0 Þ0.964

ðaSISSOðq¼2Þ
0 −5.09×10−4 EABnA

jrcats;B−rs;BjÞ
2.75

; ð3Þ

where IPB is the ionization potential of the B atom, EAB is
the electron affinity of the B atom, nA is the oxidation
number of the A atom, rs;B is the radius of the valence-s
orbital of the neutral atom, and rcats;B is the radius of the
valence-s orbital of the 1þ cation. The equations for

aSISSOðq¼2Þ
0 and ESISSOðq¼2Þ

0 as well as for other SISSO-
derived models are shown in Supplemental Material [25].
SISSO selects IPB, EAB, rcats;B, rs;B, a

SISSO
0 , andESISSO

0 as the
key parameters correlated with B0. Therefore, SISSO
recovers the parameters a0 and nA, which also enter
Eq. (2). However, the description of B0 provided by
Eq. (3) goes beyond the empirical model, since the
log-regression models provide a significantly better
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performance [light green in Fig. 2(b)] compared to Eq. (2)—
even though they do not outperform the models obtained
with the linear-regression approach, dark green in Fig. 2(b).
Equation (3) highlights that B0 is directly proportional to E0

and to (IPB − EAB). This might reflect the ionic interaction
contributions to B0. Indeed, the latter term indicates the
relevance of the ionization ofB species, which is present as a
cation in the perovskite. In the denominator of Eq. (3),a0 and
ðEABnA=jrcats;B − rs;BjÞ appear. The latter term possibly cap-
tures the charge-dependent effective size of the B species in
the perovskite, analogous to the Shannon effective radii
[47], and it might be related to covalent contributions to B0,
since these interactions depend on the overlap (and thus
distance) between the interacting orbitals of B cations and
O−2 species. Despite this analysis, we like to stress that by
assigning a specific, physical meaning to each term of the
equations derived by (HI-)SISSO, one might overlook the
possibly intricate interplay of processes governing the
properties. Furthermore, the physical relationship between
the identified parameters and the underlying physics might
be indirect, as the correlations donot necessarily reflect direct
causality.
In this Letter, we introduced a hierarchical SR frame-

work to efficiently address complex materials properties
and functions. This approach provides the key physical
parameters reflecting the underlying processes responsible
for the behavior of interest, while increasing the perfor-
mance of SR models. The analysis described in this Letter
can be reproduced and modified at the Novel-Materials
Discovery (NOMAD) AI Toolkit [48].

The dataset of calculated perovskite properties as well as
the input and output files of the DFT calculations are
available at the NOMAD Repository and Archive [49].
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Vydrov, and János G. Ángyán, Assessing the performance
of recent density functionals for bulk solids, Phys. Rev. B
79, 155107 (2009).

[41] Ajay Kumar Jena, Ashish Kulkarni, and TsutomuMiyasaka,
Halide perovskite photovoltaics: Background, status, and
future prospects, Chem. Rev. 119, 3036 (2019).

[42] Jonathan Hwang, Reshma R. Rao, Livia Giordano, Yu
Katayama, Yang Yu, and Yang Shao-Horn, Perovskites in
catalysis and electrocatalysis, Science 358, 751 (2017).

[43] Marvin L. Cohen, Theory of bulk moduli of hard solids,
Mater. Sci. Eng. A 105–106, 11 (1988).

[44] Marvin L. Cohen, Calculation of bulk moduli of diamond
and zinc-blende solids, Phys. Rev. B 32, 7988 (1985).

[45] George J. Fischer, Zichao Wang, and Shun-ichiro Karato,
Elasticity of CaTiO3, SrTiO3 and BaTiO3 perovskites up to
3.0 Gpa: The effect of crystallographic structure, Phys.
Chem. Miner. 20, 97 (1993).

[46] A. S. Verma and A. Kumar, Bulk modulus of cubic
perovskites, J. Alloys Compd. 541, 210 (2012).

[47] R. D. Shannon andC. T. Prewitt, Effective ionic radii in oxides
and fluorides, Acta Crystallogr. Sect. B 25, 925 (1969).

[48] https://nomad-lab.eu/aitoolkit/hierarchical_sisso.
[49] 10.17172/NOMAD/2022.02.21-3.

PHYSICAL REVIEW LETTERS 129, 055301 (2022)

055301-6

https://doi.org/10.1103/PhysRevB.100.174513
https://doi.org/10.1103/PhysRevB.100.174513
https://doi.org/10.1021/acs.chemmater.9b04472
https://doi.org/10.1103/PhysRevMaterials.4.034204
https://doi.org/10.1557/s43577-021-00165-6
https://doi.org/10.1038/s41467-021-22048-9
https://doi.org/10.1038/s41467-021-22048-9
https://doi.org/10.1063/5.0045561
https://doi.org/10.21105/joss.03960
https://doi.org/10.21105/joss.03960
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.055301
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1038/s41524-019-0254-4
https://doi.org/10.1038/s41524-019-0254-4
https://doi.org/10.1038/srep43482
https://doi.org/10.1088/1367-2630/aac7f0
https://doi.org/10.1016/j.jallcom.2009.06.001
https://doi.org/10.1107/S0365110X60001540
https://doi.org/10.1103/PhysRevB.86.235117
https://doi.org/10.1016/j.jpcs.2006.02.004
https://gitlab.mpcdf.mpg.de/nomad-lab/atomic-features-package
https://gitlab.mpcdf.mpg.de/nomad-lab/atomic-features-package
https://gitlab.mpcdf.mpg.de/nomad-lab/atomic-features-package
https://gitlab.mpcdf.mpg.de/nomad-lab/atomic-features-package
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1126/sciadv.aav0693
https://doi.org/10.1016/j.progsolidstchem.2014.08.001
https://doi.org/10.1103/PhysRevB.79.155107
https://doi.org/10.1103/PhysRevB.79.155107
https://doi.org/10.1021/acs.chemrev.8b00539
https://doi.org/10.1126/science.aam7092
https://doi.org/10.1016/0025-5416(88)90475-2
https://doi.org/10.1103/PhysRevB.32.7988
https://doi.org/10.1007/BF00207202
https://doi.org/10.1007/BF00207202
https://doi.org/10.1016/j.jallcom.2012.07.027
https://doi.org/10.1107/S0567740869003220
https://nomad-lab.eu/aitoolkit/hierarchical_sisso
https://nomad-lab.eu/aitoolkit/hierarchical_sisso
https://doi.org/10.17172/NOMAD/2022.02.21-3

