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Abstract
In order to estimate the reactivity of a large number of potentially complex heterogeneous catalysts while searching for novel 
and more efficient materials, physical as well as data-centric models have been developed for a faster evaluation of adsorp-
tion energies compared to first-principles calculations. However, global models designed to describe as many materials as 
possible might overlook the very few compounds that have the appropriate adsorption properties to be suitable for a given 
catalytic process. Here, the subgroup-discovery (SGD) local artificial-intelligence approach is used to identify the key 
descriptive parameters and constrains on their values, the so-called SG rules, which particularly describe transition-metal 
surfaces with outstanding adsorption properties for the oxygen-reduction and -evolution reactions. We start from a data set 
of 95 oxygen adsorption-energy values evaluated by density-functional-theory calculations for several monometallic surfaces 
along with 16 atomic, bulk and surface properties as candidate descriptive parameters. From this data set, SGD identifies 
constraints on the most relevant parameters describing materials and adsorption sites that (i) result in O adsorption energies 
within the Sabatier-optimal range required for the oxygen-reduction reaction and (ii) present the largest deviations from the 
linear-scaling relations between O and OH adsorption energies, which limit the catalyst performance in the oxygen-evolution 
reaction. The SG rules not only reflect the local underlying physicochemical phenomena that result in the desired adsorption 
properties, but also guide the challenging design of alloy catalysts.

Keywords Artificial intelligence · Subgroup discovery · Symbolic inference · Supervised descriptive rule induction · 
Transition-metal surfaces

1 Introduction

Among the multiple processes that govern heterogeneous 
catalysis [1–3], the bond-breaking and -forming reactions 
occurring on the catalyst surface, and, in particular, the asso-
ciated (free-) energy barriers, play an important role in deter-
mining the reactivity of a given material. The energy barri-
ers of surface reactions have been related to the adsorption 
energy of reactants, reaction intermediates or products via 

linear Brønsted–Evans–Polanyi relationships [4, 5]. Adsorp-
tion energies can be evaluated using ab initio methods, for 
instance via density-functional-theory (DFT) calculations. 
However, the explicit evaluation of adsorption energies by 
accurate first-principles methods for a large number of mate-
rials, desirable in the context of catalyst screening, becomes 
impractical when complex catalysts such as transition-metal 
alloys are considered. This is because these materials display 
a large number of surface sites that are possibly relevant in 
catalysis.

In order to efficiently explore a large number of possi-
bly complex materials in the quest for novel catalysts, the 
scaling-relations approach [6], among other physical [7] or 
data-centric [8] models, have been used for the estimation of 
adsorption energies at lower computational effort compared 
to DFT. The scaling relations exploit the approximately 
linear relationships between adsorption energies of differ-
ent surface species to reduce the number of explicit DFT 
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calculations needed to investigate a certain catalytic pro-
cess. Such linear models are designed to estimate adsorption 
energies for as many different materials and surface sites as 
possible. However, only very few of the investigated systems 
present the appropriate adsorption properties to be useful for 
a given catalytic process. Firstly, the adsorption energies of 
key reaction intermediates typically need to lie in a Sabatier-
optimal range for the performance to be maximized [9–11]. 
Secondly, the adsorption energies of different species might 
need to be tuned independently for an optimal reactivity to 
be achieved [12]. This implies that deviations from the linear 
relationships between adsorption energies, which describe 
the trend for most of the materials, might be actually desir-
able [13]. In both these situations, the interesting materi-
als and surface sites thus present statistically exceptional 
adsorption properties. This questions the suitability of using 
global models to screen for new catalysts.

Here, we apply the subgroup-discovery (SGD) artificial-
intelligence local approach [14–19] to identify key descrip-
tive parameters—and constraints on their values-, which are 
particularly associated to outstanding adsorption properties 
of transition-metal surfaces. In particular, we introduce a 
strategy to address target properties whose desired values lie 
in a specific range and use this approach to describe adsorp-
tion sites presenting Sabatier-optimal oxygen adsorption 
energies for the oxygen-reduction reaction (ORR) [20]. 
Additionally, we show how SGD can be used to describe 
data points that deviate the most from a given model, such 
as the linear-scaling relations between O and OH adsorption 
energies on different surface sites. Such scaling relations 
impose a limit for the optimization of oxygen-evolution reac-
tion (OER) performance [21]. Thus, materials and adsorp-
tion sites deviating from the linear scaling are the interesting 
ones. The ORR and the OER are two crucial processes for 
energy conversion and storage.

2  Subgroup‑Discovery Approach

We start our analysis by introducing the SGD approach 
[14–18] to uncover complex patterns associated to outstand-
ing local behavior by using data sets. This methodology has 
been recently applied to catalysis [22] as well as materials-
science [18, 23] problems.

The SGD method is based on an input data set, which we 
refer to as the population P of data points, each of them asso-
ciated to a different material or, in the case of this work, to a 
different surface site. For each of the data points, the value of 
a target of interest, Y , and the values of N potentially relevant 
candidate descriptive parameters, denoted �1,�2,… ,�N , are 
known. The candidate descriptive parameters are structural or 
physicochemical parameters that possibly correlate with the 
target. Starting from such data set, SGD identifies subsets of 

data, hereafter subgroups (SGs), that present an outstanding 
distribution of the target values with respect to the whole data 
set (Fig. 1A). The so-called quality function Q(P, SG) meas-
ures how outstanding a SG is compared to the whole data set. 
This function typically has the form

where the first term, the coverage, contains the ratio between 
the number of data points in the subgroup s(SG) and the 
total number of data points in the whole data set s(P). The 
coverage controls the subgroup size and prevents that very 
small SGs with little statistical significance are selected. 
The second term u(P, SG) , the utility function, measures the 
dissimilarity between the SG and the population. It can be 
chosen[18] depending on the scientific question of interest 
(vide infra).

The SGD algorithm consists in two steps. Firstly, combina-
tion of statements (hereafter selectors, �(�) ) about the data 
are generated. The selectors are Boolean functions defined 
through conjunctions of propositions and have the form

where “ ∧ ” denotes the “and” operator and each proposition 
�i is, for instance, an inequality constraint on one of the 
descriptive parameters

for some constant vi to be determined during the analysis 
(see below). The selectors describe convex regions in the 
descriptive parameter space defining the SGs. Secondly, a 
Monte Carlo search algorithm is used to find SGs, defined 
by the selectors generated in the first step, that maximize the 
quality function. The most relevant SGs are those for which 
the quality function reaches the highest values. The selec-
tors defining those SGs, and, more specifically, the proposi-
tions in the selectors, contain the key descriptive param-
eters associated to the underlying processes that exclusively 
govern the local behavior within the subsets (or SGs) of 
data points. The propositions entering the selectors can be 
thus seen as rules determining the outstanding SG behavior. 
Therefore, the SG is at the same time the subset of selected 
data and the selector, i.e., the rules that are used to obtain 
this selection. In fact, the SG rules are more relevant than the 
particular subset of selected (training) data. For candidate 
descriptive parameters that are continuous variables, vi (in 
Eq. 3) could assume any value within the ranges of varia-
tion of the descriptive parameters in the training data set. 
Thus, a large number of propositions could be, in principle, 
constructed using many different vi values. However, the SG 
search becomes computationally inefficient as the number 
of propositions increases. For this reason, only a finite set 

(1)Q(P, SG) =
s(SG)

s(P)
∗ u(P, SG),

(2)�(�) ≡ �1(�) ∧ �2(�) ∧⋯ ∧ �p(�),

(3)𝜋i(𝜑) ≡ 𝜑i ≥ vi or 𝜋i(𝜑) ≡ 𝜑i < vi,
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of meaningful vi values is taken into account in the SGD 
approach. These meaningful values are determined, for each 
candidate descriptive parameter, by k-means clustering using 
the input data. In order words, the clustering approach is 
used to select the k bins according to which the histograms 
associated to the distribution of each descriptive parameter 
are partitioned. Propositions are then formed, based on 
each of the resulting bins. In this work, we used 10 clusters. 
Further SGD details are available in Electronic Supporting 
Information, ESI.

3  Data Set of Adsorption Energies 
and Candidate Descriptive Parameters

We analyze a data set containing 95 oxygen (atomic O) 
adsorption energies, which were calculated with DFT using 
the van der Waals-corrected BEEF-vdW exchange–corre-
lation functional in previous publications. [8, 24] Eleven 
transition metals and several adsorption sites of differ-
ent surfaces for which (meta)stable oxygen adsorption is 
observed were included in our analysis (Fig. 1B). We note 
that high- as well as low-coordinated metal sites are pre-
sent in the chosen metal surfaces. In particular, the fcc(211) 

surface was considered because it contains both terrace and 
step-edge-like sites. By including sites with different coordi-
nation in our analysis, we take into account that the adsorp-
tion properties are sensitive to the surface structure and that 
either high- or low-coordinated sites might be relevant for 
catalysis. The oxygen adsorption energy is defined (using 
the convention in [11]) as

where EO2(g)
 , Esurf,clean and Esurf,ads are the total energies 

of the  O2 gas-phase molecule, clean surface, and surface 
containing the O adsorbate, respectively. Positive oxygen 
adsorption-energy values correspond, therefore, to favorable 
adsorption with respect to the gas-phase molecule.

An important aspect in SGD is the choice of candidate 
descriptive parameters. Following reference [8], we use, as 
candidate descriptive parameters, the atomic, bulk, and clean 
surface properties shown in Table 1. The atomic parameters 
are properties that only depend on the element. The bulk, 
surface and site parameters are related to the geometry and 
the electronic structure of either bulk metals, or their sur-
faces and adsorption sites. The surface- and surface-site-
related descriptive parameters were evaluated on (relaxed) 

(4)EO
ads

= Esurf,clean + 0.5EO2(g)
− Esurf,ads,

Fig. 1  A illustration of the SGD approach for identifying key descrip-
tive parameters and rules determining SGs with outstanding distri-
bution of the target. The rules are constraints on the values of key 
descriptive parameters. The distribution of target values in the SG 
might be outstanding because it is, for instance, narrower than the 
distribution of the target values over the whole data set. B transition 
metals and surfaces considered in this work. We consider the face-

centered cubic (fcc) structure for all metals except Fe, for which the 
body-centered cubic (bcc) structure and the (210) surface is consid-
ered. For Co, the (0001) surface of the hexagonal closed packed (hcp) 
structure is also included. The adsorption sites of the fcc(211) surface 
are also shown in detail on the right. This surface termination con-
tains both terrace and step-edge-like sites, labelled “t” and “s” in the 
figure, respectively
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clean surfaces, i.e., without the presence of the adsorbed 
species, in reference [8]. The surface-site parameters were 
calculated as averages over the metal atoms that compose the 
site ensemble. In total, 16 parameters uniquely characteriz-
ing each material and surface site are used. We note that the 
candidate descriptive parameter set includes properties pro-
posed to describe overall trends in adsorption energies such 
as the d-band center ( �d ) [7] or coordination numbers (CN) 
[29] as well as many other, potentially relevant, parameters.

4  Subgroups of Surface Sites with Optimal 
Range of Oxygen Adsorption Energies 
for the ORR

To illustrate how SGD identifies the relevant descriptive 
parameters and the rules describing surface sites that bind a 
certain reaction intermediate with a specific binding 
strength, we start our analysis by identifying SGs of surface 
sites providing an optimal oxygen adsorption energy EO

ads,opt
 

of 1.80 eV. Based on DFT-derived potential energy surfaces 
corresponding to the proposed main mechanisms of the 
ORR, adsorbed oxygen was identified as a key intermediate 
in this reaction and the oxygen adsorption-energy value of 
1.80 eV was related to the highest activity over a series of 
transition-metal low-index (111) surfaces [11]. To take into 
account that a range of oxygen adsorption energies around 
1.80  eV might result in catalysts that maximize the 

performance, we define, for our SGD analysis, a target that 
assumes small values in a given window around EO

ads,opt
 and 

rapidly increases outside such interval. Among several pos-
sible choices of functions that would reproduce this behav-
ior, we use a quadratic expression and consider [1.30, 
2.30 eV] window of optimal adsorption-energy values. Our 
SGD target is thus defined by

where EO
ads

 is the oxygen adsorption energy for an arbitrary 
surface site. The distribution of ΔO over the training data 
set of 95 adsorption-energy values is shown in Fig. 2A and 
B. We are interested in SGs of data points for which ΔO 
assumes low values. As utility function, we use

where std(SG) and std(P) are the standard deviation of the 
distributions of the target in the SG and in the whole data 
set, respectively. By using the ratio of standard deviations 
in the utility function, we favor the selection of SGs that 
present narrow distribution of values for the target.

Among the SGs that maximize the quality-function val-
ues, we identify a SG containing 23 data points, i.e., ca. 24% 
of the data set that presents a narrow distribution of target 
values relatively to the whole data set and is centered at the 
lowest target values (Fig. 2B, in black).

This SG contains the surface sites for which the oxygen 
adsorption energies are the closest to the proposed optimal 
value (Fig. 2A, in which the adsorption sites belonging to 
the SG are shown as black crosses). All considered adsorp-
tion sites of Pd, Ag and Pt surfaces are part of this SG. Pd 
and Pt are indeed known to be the best ORR catalysts among 
all metals included [20]. This SG is defined by the selector 
(Fig. 2C)

Therefore, the interatomic nearest-neighbours distance 
of the bulk materials is a key parameter associated to the 
optimal range of oxygen adsorption energies for the ORR. 
In particular, materials for which bulknnd assumes an inter-
mediate range of values, given by (7), present surface sites 
with the desired oxygen binding strength. We note that the 
SG rules do not necessarily reflect causality. The relevance 
of bulknnd in (7), for instance, does not imply that the appli-
cation of strain to reduce the bulknnd in Au will improve the 
performance of this material. It might reflect, however, that 
both the equilibrium bulk interatomic distance and the oxy-
gen adsorption are controlled by similar underlying bonding 
patterns.

(5)ΔO =

(
EO
ads

− EO
ads,opt

0.5eV

)2

,

(6)u(P, SG) =
std(SG)

std(P)
,

(7)𝜎O
≡ 2.786 < bulknnd ≤ 2.987Å.

Table 1  Candidate descriptive parameters used for the SGD of out-
standing transition-metal catalysts

a As determined by DFT-BEEF-vdW

Type Description Refs.

Atomic PE Pauling electronegativity [25]
IP Ionization potential [26]
EA Electron affinity [26]

Bulk bulk
nnd

Nearest-neighbor distance [8]a

rd d-orbital radius [27]
V2

ad
Coupling matrix element between 

the adsorbate states and the metal d 
states squared

[28]

Surface W Work function [8]a

Surface Site site
no

Number of atoms in the ensemble [8]a

CN Coordination number [8]a

site
nnd

Nearest-neighbor distance [8]a

�d d-band center [8]a

Wd d-band width [8]a

fd d-band filling [8]a

fsp sp-band filling [8]a

DOSd Density of d-states at Fermi level [8]a

DOSsp Density of sp-states at Fermi level [8]a
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The SG rule given by (7) is the simplest SG rule iden-
tified, which only depends on one descriptive parameter. 
Several different SG rules (Table S1) result, however, in the 
exact same subselection of (training) data points and thus in 
the same quality-function values compared to the SG defined 
by (7). For instance, the selector

which depends on two descriptive parameters, also selects 
the adsorption sites of Pd, Ag and Pt. The presence of simi-
lar SGs defined by slightly different rules is due to the fact 
that different descriptive parameters encode similar phys-
icochemical information. Indeed, some of the candidate 
descriptive parameters are correlated with each other. In par-
ticular, the Pearson correlation between bulknnd and sitennd is 
equal to 0.99 and between bulknnd and PE is 0.72 (Fig. S3). 
We note that correlations involving more than two descrip-
tive parameters, which are not captured by the Pearson cor-
relation scores, might be also present within the training data 
set. This is not a limitation for SGD, since it can identify 
different equivalent descriptive rules (with respect to a given 
input training data).

We have also used the SGD approach with a categori-
cal target, which classifies surface sites presenting oxygen 
adsorption energy in the desired range and verified the 
dependence of the SG on the choice of interval size (see 
details in ESI). The resulting SG rules are similar to those 
shown in (7) and (8).

The evaluation of adsorption energies on surfaces of 
metal alloys is more resource-consuming for DFT com-
pared to monometallic systems, as the number of possible 
metal combinations and surface sites grows significantly. 
Therefore, approaches indicating the most promising alloy 

(8)𝜎O�

≡ sitennd > 2.759Å ∧ PE ≤ 2.125,

compositions and surface sites to be investigated are desir-
able. To assess the transferability of the SG rules trained 
using monometallic systems to alloys, we used an additional 
alloy data set. This alloy data set contains information on 
(211) surfaces of 36 bimetallic alloys with 1:1 atomic ratio, 
evaluated by DFT in reference [8]. Such data set is split in 
two subsets. (i) The test set contains the 4 alloy composi-
tions AgAu, AgPd, IrRu, and PtRh and, in total, 37 differ-
ent adsorption sites. For such test set, the oxygen adsorp-
tion energies are explicitly calculated by DFT. This data set 
is used for evaluating the performance of the SG rules on 
the alloys. (ii) The exploitation set contains the descriptive 
parameters for 32 alloy compositions: AgIr, AgPt, AuCu, 
CuAg, CuIr, CuPd, CuPt, CuRh, CuRu, IrAu, IrPt, NiAg, 
NiAu, NiCu, NiIr, NiPd, NiPt, NiRh, NiRu, PdAu, PdIr, 
PdPt, PtAu, RhAg, RhAu, RhIr, RhPd, RuAg, RuAu, RuPd, 
RuPt, and RuRh. The exploitation set contains, in total, 323 
different adsorption sites. This data set used for the screen-
ing of new promising alloys and surface sites. We note that 
the alloy atomic descriptive parameters are taken as the aver-
age between the atomic properties of the metal atoms which 
compose a given surface site.

Figure 3A shows the surface sites of the test set of alloys 
in the coordinates of the two key descriptive parameters 
identified by the SG rule (8): sitennd and PE . In this figure, 
the DFT-calculated ΔO values are indicated by the color 
code and the black crosses identify the alloy surface sites 
selected by the constraints in (8), the latter indicated by the 
blue dashed lines and arrows. In Fig. 3B, the distributions of 
ΔO values over the test set of alloys and over the data points 
selected by the SG rule are shown. Even though the SG rule 
misses two surface sites of the PtRh alloy (hcp-t-2 and fcc-t-
2), which present relatively low ΔO of 0.11 and 0.14, respec-
tively, it correctly indicates AgPd as an outstanding alloy.

Fig. 2  SGD of transition-metal catalysts presenting surface sites with 
an optimal range of oxygen adsorption energies. A visualization of 
the target quantity ( ΔO ), defined in Eq. 5, for the training data. ΔO , 
which is unitless, is smaller than 1 in an interval of ± 0.5 eV centered 
around the proposed optimal value of EO

ads,opt
= 1.8 eV . B distribu-

tion of ΔO in the whole data set and in the identified SG. C SG rule, 
indicated by the dashed lines and by the arrows, on a identified key 
descriptive parameter: bulk nearest-neighbor distance ( bulknnd ). The 
data points corresponding to the SG are marked with black crosses in 
A and C 
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Indeed, the ΔO values for the AgPd alloy lie in the range 
0.00–0.48 and all AgPd surface sites are selected by the SG 
rule. Moreover, the SG rule did not select any alloy surface 
site with ΔO > 0.48 . These results show that the SG rules 
trained only on monometallic systems have a good perfor-
mance to describe alloys.

Next, we applied the SG rules to select surface sites of 
the exploitation set of alloys. In order to narrow down the 
selection, we use the additional constraint that the alloy sur-
face sites of interest should simultaneously satisfy all the 
SG rules identified using the monometallic systems (rules 
shown in Table S1 for the ΔO target). For this reason, not 
all the data points falling in the region equivalent to the one 
shaded in Fig. 3A are marked with black crosses in Fig. 3C. 
The selection of alloys based on the SG rules results in the 
following alloys, identified as promising materials: AgIr, 
AgPt, and RhAg. While AgPt is obtained simply by com-
bining two of the outstanding monometallic catalysts, the 
selection of AgIr and RhAg alloys indicates the potential of 
mixing Ag, which presents oxygen adsorption energy of ca. 
2.0 eV with a second metal presenting oxygen adsorption 
energy slightly lower than 1.80 eV for achieving outstand-
ing performance.

5  Subgroups of Surface Sites Deviating 
from the Linear‑Scaling Relations 
Between O and OH Adsorption Energies 
for the OER

The linear trends observed between adsorption energies of 
different surface species impose, in some reactions, a limit 
to the maximum performance that can be achieved. This is 
because the linear-scaling relations imply that the absorption 
of two related species cannot be tuned independently, limit-
ing the possibilities for catalyst optimization. For instance, 
in the OER, the adsorption energies of the three key inter-
mediates, O, OH, and OOH, are correlated [21] and the O 
adsorption energy needs be decreased with respect to OOH 
adsorption energy in order to decrease the limiting poten-
tial and thus maximize the performance [12]. To overcome 
this limitation imposed by the linear-scaling relations, an 
immense effort has been put into strategies to identify excep-
tional materials and adsorption sites that “break”, or deviate 
from, the scaling relations [13]. Most of the materials are 
typically well described by the linear-scaling relations. Thus, 
deviations from these linear models are the exceptions and 
local approaches might be more suitable for finding catalysts 
and surface sites that deviate from the scaling relations.

To illustrate how the SGD approach can be used to 
address outstanding surface sites that deviate from linear-
scaling relationships, we next search for SGs describing 
fcc(211) surface sites of monometallic surfaces providing 
high deviations from the scaling relations between atomic 
oxygen (O) and hydroxyl (OH). For this purpose, we first 
establish linear models for each adsorption site on which 

Fig. 3  SG rules describing monometallic surface sites with optimal 
range of oxygen adsorption energies applied for the design of bime-
tallic alloys. A representation of the test set of alloy surface sites in 
the coordinates of the key descriptive parameters identified by the SG 
rule (8): sitennd and PE . The data points are colored according to their 
DFT-calculated ΔO value. The data points selected by the SG rule (8) 
and by the regression tree rule (13) are shown in black and orange 
crosses, respectively. B distribution of DFT-calculated ΔO values in 

the test set of alloy surface sites (grey). The distributions of ΔO values 
over the data points selected by the SG rule (8) and the regression 
tree rule (13) are displayed in black and orange, respectively. C rep-
resentation of the exploitation set of alloy surface sites in the coordi-
nates sitennd and PE . The data points selected by the SG rules shown 
in Table S1 (for the ΔO target) and by the regression tree rule (13) are 
shown in black and orange crosses, respectively
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both O and OH present a (meta)stable adsorption: fcc-
t, hcp-t, fcc-s and bridge2-s (show in colors in Fig. 4A). 
These models have the form

where � and � are fitted coefficients, different for each sur-
face site. In total, 36 data points are used. The linear fits 
(Fig. 4A) evidence that most of the data points are well 
described by the scaling relation. Indeed, the deviations from 
the linear trend are typically lower than 0.20 eV (Fig. 4B). 
The bridge2-s surface site is in particular well captured by 
the linear model. We define the quantity

the absolute difference between the OH adsorption energy 
estimation by the scaling relation ( EOH

ads,scaling
 ) and the actual 

DFT-calculated value ( EOH
ads,DFT

 ) as target for the SGD 
approach. In this way, the interesting data points, i.e., the 
surface sites that are worst described by the linear trend, 
correspond to high values of ΔO,OH

scaling
 . Most of the observa-

tions in the data set correspond to low ΔO,OH

scaling
 values 

(Fig. 4B). We are thus interested in SGs with an overall 
distribution of the target value as different as possible from 
the distribution of this quantity in the whole data set. This 
requirement can be introduced in the SGD by means of the 
following utility function:

(9)EOH
ads,scaling

= �EO
ads,DFT

+ �,

(10)ΔO,OH

scaling
=
|
|
|
EOH
ads,DFT

− EOH
ads,scaling

|
|
|
,

In (11), DcJS(P, SG) is the cumulative-distribution-function 
formulation [30] of the Jensen-Shannon divergence between 
the distribution of the target values in the SG and the distribu-
tion of the target values in the whole data set [30]. DcJS meas-
ures the dissimilarity between two distributions. It assumes 
small values for similar distributions and increases as the 
distributions have different standard deviations and/or mean 
values (see further details in ESI). The candidate descriptive 
parameters shown in Table 1 are also used here, and only the 
monometallic systems are initially considered.

The SGD approach identifies a SG containing 6 data points, 
i.e., ca. 17% of the population, which is narrow and has rel-
atively high target values with respet to the whole data set 
(Fig. 4B, in black). Indeed, this SG contains the surface sites 
deviating the most from the linear-scaling relations (Fig. 4A, in 
which the data points belonging to this SG are shown as black 
crosses). The sites fcc-s, fcc-t, and hcp-t of the Ag surface, the 
sites fcc-s, and hcp-t of the Ir surface and the fcc-s site of the Pt 
surface are part of this SG. Such SG is defined by the selector

as shown in Fig. 4C and D. Therefore, the number of atoms 
in the surface site ensemble ( siteno ) and the electron affinity 
of the metal ( EA ) are relevant parameters related to high 
ΔO,OH

scaling
 . The constrain on siteno excludes the bridge2-s sites 

from the SG and shows that surface sites composed by more 
than two atoms, on which the adsorbate can be more 

(11)u(P, SG) = DcJS(P, SG).

(12)𝜎O,OH
≡ siteno > 2.5 ∧ 1.236 eV ≤ EA ≤ 2.125 eV,

Fig. 4  SGD of transition-metal 
catalysts and adsorption sites of 
fcc(211) surfaces that deviate 
from the linear-scaling relations. 
A scaling relations between 
oxygen (O) and hydroxyl (OH) 
species for different adsorption 
sites of the fcc(211) monome-
tallic surfaces. B distribution of 
the target ( ΔO,OH

scaling
 ) within the 

population and in the identi-
fied SG. C and D SG rules 
(indicated by the dashed lines 
and arrows) on the selected key 
descriptive parameters coordi-
nates: number of atoms in the 
ensemble ( siteno ) and electron 
affinity ( EA ), respectively. The 
data points corresponding to 
the SG are marked with black 
crosses in A, C and D 
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highly-coordinated, are more prone to deviate from the lin-
ear trend. The conditions on EA , in turn, shows that this 
outstanding behavior is limited to only some of the metals, 
and this is encoded in this element-dependent (atomic) 
parameter.

We then evaluated the performance of the rules defining 
the SGs of surface sites deviating from the linear-scaling 
relations (12), derived based on monometallic systems, on 
the test set of alloys (Fig. 5A and B). The SG rules indicate 
the alloy surface sites AgAu fcc-s-1, AgAu fcc-s-2, AgAu 
hcp-t-2 and IrRu fcc-s-1 as those deviating the most from 
the scaling relations. Even though the AgAu fcc-s-2 presents 
ΔO,OH

scaling
= 0.072eV and it is thus incorrectly selected by the 

SG rule, the AgAu fcc-s-1, AgAu hcp-t-2 and IrRu fcc-s-1 
sites do correspond to the alloy surface sites with highest 
calculated ΔO,OH

scaling
 values (0.27, 0.22, 0.25 eV, respectively). 

These results show that the SG rules derived based on mono-
metallic systems have a reasonable performance for the 
alloys. By applying the SG rules shown in Table S1 for the 
ΔO,OH

scaling
 target to the exploitation set of alloys (Fig. 5C), sev-

eral fcc and hcp sites of the alloys AgIr, AgPt, AuCu, CuAg, 
CuIr, CuPt, IrPt, NiAg, NiPt, PdPt, PtRh, RhAg, RhIr, and 
RuPt are selected as promising candidates that might deviate 
from the scaling relations between O and OH. We note that 
the performance of the SG rules can be systematically 
improved by retraining with more data, for instance includ-
ing information on alloys.

Overall, our results demonstrate the potential of SGD 
to detect complex local patterns associated to outstand-
ing behavior. In particular, we showed here how the SGD 

approach can be applied to identify rules describing statis-
tically exceptional data points associated (i) to a specific 
(range of) desired value(s) of a target property and (ii) to the 
largest deviations from a given model. Furthermore, gener-
alizable SG rules were derived based on extremely small 
data sets compared to those typically needed for widely-
used artificial-intelligence methods. This makes the SGD 
approach useful for several catalysis and materials-science 
applications in which only small (consistent) data sets are 
available. This contribution also demonstrates how the shar-
ing of well-annotated FAIR (Findable, Accessible, Inter-
operable, and Re-purposable) data, increasingly available 
via common data infrastructures [31], can enable scientific 
insights beyond the original purpose for which the data was 
created and used.

Even though the SGD approach enables the screening of 
new materials, as demonstrated above, it does not provide 
predictions of oxygen adsorption energies for each differ-
ent adsorption site. In particular, the SGD rule might not 
indicate the most stable surface sites for a given surface 
containing several possible adsorption sites on which oxy-
gen might bind with different strength. However, knowing 
the relative stability of adsorption configurations might be 
important for the description of a catalytic process. This is 
addressed in reference [8] by using the sure-independence-
screening-and-sparsifying-operator approach [32]. Simi-
larly, we note that other AI strategies have been developed 
and applied for the accurate estimation of adsorption ener-
gies [33, 34]. Contrary to such global approaches, how-
ever, SGD provides a local description focused only on 
specific desired behaviors. Furthermore, SGD identifies 

Fig. 5  SG rules describing monometallic surface sites deviating from 
scaling relations applied for the design of bimetallic alloys. A repre-
sentation of the test set of alloy surface sites in the coordinates of the 
key descriptive parameters identified by the SG rule (12): siteno and 
EA . The data points are colored according to their DFT-calculated 
ΔO,OH

scaling
 value. The data points selected by the SG rule (12) and by 

the regression tree rule (14) are shown in black and orange crosses, 
respectively. B distribution of DFT-calculated ΔO,OH

scaling
 values in the 

test set of alloy surface sites (grey). The distributions of ΔO,OH

scaling
 values 

over the data points selected by the SG rule (12) and the regression 
tree rule (14) are displayed in black and orange, respectively. C rep-
resentation of the exploitation set of alloy surface sites in the coordi-
nates siteno and EA . The data points selected by the SG rules shown 
in Table S1 (for the ΔO,OH

scaling
 target) and by the regression tree rule (14) 

are shown in black and orange crosses, respectively
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simple constraints on the most relevant input parameters, 
which are helpful for rationalizing the possible underly-
ing phenomena. The SGD analysis presented here thus 
advances the physical understanding of the local behavior 
with respect to global modelling approaches. Finally, we 
note that the dynamic restructuring of the catalyst material 
that might occur under reaction conditions, influencing 
the surface structure on which the reactions take place [1, 
2], is not being taken into account in our analysis. This 
requires alternative modelling strategies [3, 35, 36].

6  Comparison of Subgroup Discovery 
with Decision‑Tree Regression

We also trained regression trees (RTs) [37] using the same 
data sets of targets and descriptive parameters as for SGD 
(see details in ESI). Similar to SGD, RTs also provide 
rules describing subsets of data identified during the train-
ing. These subsets of data are called “leaves”, and RTs 
provide predictions for the values of the target according 
to the leaf to which a given data point belongs.

For the ΔO target, the RT approach identified, on the 
leaf with the minimum predicted value of 0.12 eV, adsorp-
tion sites of Ag (fcc (111), fcc-s (211), fcc-t (211), and 
hcp-t (211)) and Pt (hollow (100), fcc-t (211), hcp-t (211)) 
metals. In total, 7 adsorption sites were selected. The rules 
for this leaf are:

We applied the RT rule (13) to the test set of alloys. 
The selected surface sites are shown as orange crosses in 
Fig. 3A and B. The RT rule selects several of the alloys 
systems for which the DFT-calculated ΔO is relatively low. 
However, the distribution of ΔO values within the surface 
sites selected by the RT rule (orange bars in Fig. 3B) 
is broader than the corresponding distribution within 
the surface sites selected by the SG rule (black bars in 
Fig. 3B). Furthermore, the RT rule misses several relevant 
sites, including the fcc-t site of the AgPd alloy, for which 
the calculated ΔO is equal to zero. Such site is correctly 
selected by the SG rule. These results indicate that the RT 
rule is less focused on the outstanding sites compared to 
the SG rule.

(13)

�O,RT
≡ �d ≤ −1.387 eV

∧ sitennd ≥ 2.651 Å

∧ IP ≤ 9.04 eV

∧ fsp ≥ 1.109

∧ DOSd ≤ 1.71 eV−1.

For the ΔO,OH

scaling
 target, the RT approach identifies, in the 

leaf with maximum predicted value of 0.42 eV, 6 adsorp-
tion sites. The rules describing this leaf are:

Interestingly, (14) and the SG rule (12) select the exact 
same subset of training data. When applied to the test set of 
alloys (Fig. 5A and B, in orange), the RT rule also selects 
similar alloy surface sites compared to (12). However, it 
misses the IrRu fcc-s-1 (211) site (presenting 
ΔO,OH

scaling
= 0.25eV ), which is correctly selected by (12) as a 

surface site that deviates from the linear-scaling relation. In 
spite of selecting similar training and test data, (12) and (14) 
provide significantly different results when applied to the 
exploitation set of alloys (Fig. 5C). In particular, the RT rule 
indicates that some bridge sites (for which siteno = 2 ) could 
break the scaling relations, while this is not the case for the 
sites selected by the SG rule nor for the training set 
(Fig. 4A).

We ascribe the worse performance of the RT approach 
with respect to SGD for the present data set to the global 
character of the loss function used to select the rules in RT. 
Indeed, the loss function minimized during the training is, 
for RT, the prediction error over the entire data set. The few 
statistically exceptional cases therefore do not significantly 
impact the choice of rules. In SGD, in contrast, the rule is 
dictated mostly by the exceptional data points.

While the decision-tree approach can be used in combina-
tion with a categorical target as a classifier rather than a 
regressor, which allows for a more focused loss function, 
such strategy requires that the thresholds used for classifica-
tion are specified a priori. For the case of the ΔO target dis-
cussed in Figs. 2 and 3, the extremes of the [1.30, 2.30 eV] 
interval used to define the target for SGD in (5) could be 
used as the classification thresholds (see results in ESI). 
However, for the general case of identifying rules for data 
points associated to a specific target value or for data points 
which deviate the most from a given model (as for the ΔO,OH

scaling
 

target discussed in Figs. 4 and 5), the choice of thresholds 
for a decision-tree classification approach, which can impact 
the resulting rules, might be nontrivial. This information is 
not required as input for the SGD approach.

(14)

�O,OH,RT
≡ �d ≤ −1.805 eV

∧ PE ≤ 2.41

∧ EA ≥ 1.27 eV

∧ CN ≥ 7.667.
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7  Conclusions

In this paper, we applied the SGD approach to identify the 
most relevant atomic, bulk and surface properties—as well 
as rules associated to those parameters—describing out-
standing SGs of transition-metal surface sites. In particular, 
we demonstrated this approach using a data set of DFT-
calculated adsorption energies [8, 24] by searching for sur-
face sites (i) that present optimal range of oxygen binding 
strength for the ORR or (ii) that deviate the most from the 
linear-scaling relations between O and OH adsorption ener-
gies that impose a limit to the OER performance. The SGs 
rules not only hint at the relevant underlying physicochemi-
cal processes that govern the local statistically exceptional 
behavior, but are also suitable for guiding the design of chal-
lenging bimetallic alloys.
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