1,177 research outputs found
Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO
We consider QCD radiative corrections to the production of W and Z bosons in
hadron collisions. We present a fully exclusive calculation up to
next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform
this NNLO computation, we use a recently proposed version of the subtraction
formalism. The calculation includes the gamma-Z interference, finite-width
effects, the leptonic decay of the vector bosons and the corresponding spin
correlations. Our calculation is implemented in a parton level Monte Carlo
program. The program allows the user to apply arbitrary kinematical cuts on the
final-state leptons and the associated jet activity, and to compute the
corresponding distributions in the form of bin histograms. We show selected
numerical results at the Tevatron and the LHC.Comment: 7 pages, 3 ps figure
Polarization proximity effect in isolator crystal pairs
We experimentally studied the polarization dynamics (orientation and
ellipticity) of near infrared light transmitted through magnetooptic Yttrium
Iron Garnet crystal pairs using a modified balanced detection scheme. When the
pair separation is in the sub-millimeter range, we observed a proximity effect
in which the saturation field is reduced by up to 20%. 1D magnetostatic
calculations suggest that the proximity effect originates from magnetostatic
interactions between the dipole moments of the isolator crystals. This
substantial reduction of the saturation field is potentially useful for the
realization of low-power integrated magneto-optical devices.Comment: submitted to Optics Letter
Threshold Resummed Spectra in B -> Xu l nu Decays in NLO (I)
We evaluate thresholds resummed spectra in B -> Xu l nu decays in
next-to-leading order. We present results for the distribution in E_X and in
m_X^2/E_X^2, for the distribution in E_X and E_l and for the distribution in
E_X, where E_X and m_X are the energy and the invariant mass of the final
hadronic state Xu respectively and E_l is the energy of the charged lepton. We
explicitly show that all these spectra (where there is no integration over the
hadronic energy) can be directly related to the photon spectrum in B -> Xs
gamma via short-distance coefficient functions.Comment: 33 pages, no figures. The section on the double distribution in the
hadron and electron energies has been largely rewritten with an improved
resummation scheme. Small stylistic changes in the remaining sections.
References adde
Socioeconomic inequalities in the quality of life of older Europeans in different welfare regimes
Background: Whether socioeconomic inequalities in health and well-being persist into old age and are narrower in more generous welfare states is debated. We investigated the magnitude of socioeconomic inequality in the quality of life of Europeans in early old age and the influence of the welfare regime type on these relationships.<p></p> Methods: Data from individuals aged 50–75 years (n = 16 074) residing in 13 European countries were derived from Waves 2 and 3 of the Survey of Health, Ageing and Retirement in Europe. Slope indices of inequality (SIIs) were calculated for the association between socioeconomic position and CASP-12, a measure of positive quality of life. Multilevel linear regression was used to assess the overall relationship between socioeconomic position and quality of life, using interaction terms to investigate the influence of the type of welfare regime (Southern, Scandinavian, Post-communist or Bismarckian).<p></p> Results: Socioeconomic inequalities in quality of life were narrowest in the Scandinavian and Bismarckian regimes, and were largest by measures of current wealth. Compared with the Scandinavian welfare regime, where narrow inequalities in quality of life by education level were found in both men (SII = 0.02, 95% CI: −1.09 to 1.13) and women (SII = 1.11, 95% CI: 0.05–2.17), the difference in quality of life between the least and most educated was particularly wide in Southern and Post-communist regimes.<p></p> Conclusion: Individuals in more generous welfare regimes experienced higher levels of quality of life, as well as narrower socioeconomic inequalities in quality of life.<p></p>
Second-Harmonic Generation in Silicon Nitride Ring Resonators
The emerging field of silicon photonics seeks to unify the high bandwidth of
optical communications with CMOS microelectronic circuits. Many components have
been demonstrated for on-chip optical communications, including those that
utilize the nonlinear optical properties of silicon[1, 2], silicon dioxide[3,
4] and silicon nitride[5, 6]. Processes such as second harmonic generation,
which are enabled by the second-order susceptibility, have not been developed
since the bulk vanishes in these centrosymmetric CMOS materials.
Generating the lowest-order nonlinearity would open the window to a new array
of CMOS-compatible optical devices capable of nonlinear functionalities not
achievable with the? response such as electro-optic modulation, sum
frequency up-conversion, and difference frequency generation. Here we
demonstrate second harmonic (SH) generation in CMOS compatible integrated
silicon nitride (Si3N4) waveguides. The response is induced in the
centrosymmetric material by using the nanoscale structure to break the bulk
symmetry. We use a high quality factor Q ring resonator cavity to enhance the
efficiency of the nonlinear optical process and detect SH output with milliwatt
input powers.Comment: 4 pages, 3 figure
From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators
Four-wave mixing can be stimulated or occur spontaneously. The first process
is intrinsically much stronger, and well understood through classical nonlinear
optics. The latter, also known as parametric fluorescence, can be explained
only in the framework of a quantum theory of light. We experimentally
demonstrate that, in a micro-ring resonator, there exists a simple relation
between the efficiencies of these two processes, which is independent of the
nonlinearity and size of the ring. In particular we show that the average power
generated by parametric fluorescence can be immediately estimated from a
classical FWM experiment. These results suggest that classical nonlinear
characterization of a photonic integrated structure can provide accurate
information on its nonlinear quantum properties.Comment: 4 pages, 3 figure
Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons
We present predictions for the associated production of a Higgs boson at NLO+PS accuracy, including the effect of anomalous interactions between the Higgs and gauge bosons. We present our results in different frameworks, one in which the interaction vertex between the Higgs boson and Standard Model W and Z bosons is parameterized in terms of general Lorentz structures, and one in which Electroweak symmetry breaking is manifestly linear and the resulting operators arise through a six-dimensional effective field theory framework. We present analytic calculations of the Standard Model and Beyond the Standard Model contributions, and discuss the phenomenological impact of the higher order pieces. Our results are implemented in the NLO Monte Carlo program MCFM, and interfaced to shower Monte Carlos through the Powheg box framework
- …
