1,660 research outputs found

    Electron-beam-induced shift in the apparent position of a pinned vortex in a thin superconducting film

    Full text link
    When an electron beam strikes a superconducting thin film near a pinned vortex, it locally increases the temperature-dependent London penetration depth and perturbs the circulating supercurrent, thereby distorting the vortex's magnetic field toward the heated spot. This phenomenon has been used to visualize vortices pinned in SQUIDs using low-temperature scanning electron microscopy. In this paper I develop a quantitative theory to calculate the displacement of the vortex-generated magnetic-flux distribution as a function of the distance of the beam spot from the vortex core. The results are calculated using four different models for the spatial distribution of the thermal power deposited by the electron beam.Comment: 9 pages, 6 figures, resubmitted to PRB with referee-suggested revisions, includes new paragraph on numerical evaluatio

    Local Simulation Algorithms for Coulombic Interactions

    Full text link
    We consider dynamically constrained Monte-Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.Comment: Proceedings Statphys22 10 page

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer

    Get PDF
    Microscopic studies of superconductors and their vortices play a pivotal role in our understanding of the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray-fields enable access to fundamental aspects of superconductors such as nanoscale variations of superfluid densities or the symmetry of their order parameter. However, experimental tools, which offer quantitative, nanoscale magnetometry and operate over the large range of temperature and magnetic fields relevant to address many outstanding questions in superconductivity, are still missing. Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBCO, using a scanning quantum sensor in form of a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample distance of ~10nm we achieve allows us to observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, while we find excellent quantitative agreement with Pearl's analytic model. Our experiments yield a non-invasive and unambiguous determination of the system's local London penetration depth, and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages, 6 figures). Comments welcome. Further information under http://www.quantum-sensing.c

    Dynamics of ions in the selectivity filter of the KcsA channel

    Get PDF
    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by under-damped Langevin equation with constant damping and white noise or by Langevin equation with a fractional memory kernel. A comparison of the potential of the mean force derived from unbiased MD simulations with the potential produced by the umbrella sampling method demonstrates significant differences in these potentials. The origin of these differences is an open question that requires further clarifications

    Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures

    Get PDF
    Intraoperative frozen section analysis can be used to improve the accuracy of tumour margin estimation during cancer resection surgery through rapid processing and pathological assessment of excised tissue. Its applicability is limited in some cases due to the additional risks associated with prolonged surgery, largely from the time-consuming staining procedure. Our work uses a measurable property of bulk tissue to bypass the staining process: as tumour cells proliferate, they influence the surrounding extra-cellular matrix, and the resulting change in elastic modulus provides a signature of the underlying pathology. In this work we accurately localise atomic force microscopy measurements of human liver tissue samples and train a generative adversarial network to infer elastic modulus from low-resolution images of unstained tissue sections. Pathology is predicted through unsupervised clustering of parameters characterizing the distributions of inferred values, achieving 89% accuracy for all samples based on the nominal assessment (n = 28), and 95% for samples that have been validated by two independent pathologists through post hoc staining (n = 20). Our results demonstrate that this technique could increase the feasibility of intraoperative frozen section analysis for use during resection surgery and improve patient outcomes

    Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation

    Full text link
    In this paper, we investigate the conformational dynamics of alanine dipeptide under an external electric field by nonequilibrium molecular dynamics simulation. We consider the case of a constant and of an oscillatory field. In this context we propose a procedure to implement the temperature control, which removes the irrelevant thermal effects of the field. For the constant field different time-scales are identified in the conformational, dipole moment, and orientational dynamics. Moreover, we prove that the solvent structure only marginally changes when the external field is switched on. In the case of oscillatory field, the conformational changes are shown to be as strong as in the previous case, and non-trivial nonequilibrium circular paths in the conformation space are revealed by calculating the integrated net probability fluxes.Comment: 23 pages, 12 figure

    Maximum Flux Transition Paths of Conformational Change

    Full text link
    Given two metastable states A and B of a biomolecular system, the problem is to calculate the likely paths of the transition from A to B. Such a calculation is more informative and more manageable if done for a reduced set of collective variables chosen so that paths cluster in collective variable space. The computational task becomes that of computing the "center" of such a cluster. A good way to define the center employs the concept of a committor, whose value at a point in collective variable space is the probability that a trajectory at that point will reach B before A. The committor "foliates" the transition region into a set of isocommittors. The maximum flux transition path is defined as a path that crosses each isocommittor at a point which (locally) has the highest crossing rate of distinct reactive trajectories. (This path is different from that of the MaxFlux method of Huo and Straub.) It is argued that such a path is nearer to an ideal path than others that have been proposed with the possible exception of the finite-temperature string method path. To make the calculation tractable, three approximations are introduced, yielding a path that is the solution of a nonsingular two-point boundary-value problem. For such a problem, one can construct a simple and robust algorithm. One such algorithm and its performance is discussed.Comment: 7 figure

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ
    • …
    corecore