73 research outputs found
Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: Review of current approaches
BACKGROUND: Emerging animal and zoonotic diseases and increasing international trade have resulted in an increased demand for veterinary surveillance systems. However, human and financial resources available to support government veterinary services are becoming more and more limited in many countries world-wide. Intuitively, issues that present higher risks merit higher priority for surveillance resources as investments will yield higher benefit-cost ratios. The rapid rate of acceptance of this core concept of risk-based surveillance has outpaced the development of its theoretical and practical bases. DISCUSSION: The principal objectives of risk-based veterinary surveillance are to identify surveillance needs to protect the health of livestock and consumers, to set priorities, and to allocate resources effectively and efficiently. An important goal is to achieve a higher benefit-cost ratio with existing or reduced resources. We propose to define risk-based surveillance systems as those that apply risk assessment methods in different steps of traditional surveillance design for early detection and management of diseases or hazards. In risk-based designs, public health, economic and trade consequences of diseases play an important role in selection of diseases or hazards. Furthermore, certain strata of the population of interest have a higher probability to be sampled for detection of diseases or hazards. Evaluation of risk-based surveillance systems shall prove that the efficacy of risk-based systems is equal or higher than traditional systems; however, the efficiency (benefit-cost ratio) shall be higher in risk-based surveillance systems. SUMMARY: Risk-based surveillance considerations are useful to support both strategic and operational decision making. This article highlights applications of risk-based surveillance systems in the veterinary field including food safety. Examples are provided for risk-based hazard selection, risk-based selection of sampling strata as well as sample size calculation based on risk considerations
Conceptualising the technical relationship of animal disease surveillance to intervention and mitigation as a basis for economic analysis
<p>Abstract</p> <p>Background</p> <p>Surveillance and intervention are resource-using activities of strategies to mitigate the unwanted effects of disease. Resources are scarce, and allocating them to disease mitigation instead of other uses necessarily involves the loss of alternative sources of benefit to people. For society to obtain the maximum benefits from using resources, the gains from disease mitigation must be compared to the resource costs, guiding decisions made with the objective of achieving the optimal net outcome.</p> <p>Discussion</p> <p>Economics provides criteria to guide decisions aimed at optimising the net benefits from the use of scarce resources. Assessing the benefits of disease mitigation is no exception. However, the technical complexity of mitigation means that economic evaluation is not straightforward because of the technical relationship of surveillance to intervention. We argue that analysis of the magnitudes and distribution of benefits and costs for any given strategy, and hence the outcome in net terms, requires that mitigation is considered in three conceptually distinct stages. In Stage I, 'sustainment', the mitigation objective is to sustain a free or acceptable status by preventing an increase of a pathogen or eliminating it when it occurs. The role of surveillance is to document that the pathogen remains below a defined threshold, giving early warning of an increase in incidence or other significant changes in risk, and enabling early response. If a pathogen is not contained, the situation needs to be assessed as Stage II, 'investigation'. Here, surveillance obtains critical epidemiological information to decide on the appropriate intervention strategy to reduce or eradicate a disease in Stage III, 'implementation'. Stage III surveillance informs the choice, timing, and scale of interventions and documents the progress of interventions directed at prevalence reduction in the population.</p> <p>Summary</p> <p>This article originates from a research project to develop a conceptual framework and practical tool for the economic evaluation of surveillance. Exploring the technical relationship between mitigation as a source of economic value and surveillance and intervention as sources of economic cost is crucial. A framework linking the key technical relationships is proposed. Three conceptually distinct stages of mitigation are identified. Avian influenza, salmonella, and foot and mouth disease are presented to illustrate the framework.</p
Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma
Background Equine melanoma has a high incidence in grey horses. Xenogenic DNA
vaccination may represent a promising therapeutic approach against equine
melanoma as it successfully induced an immunological response in other species
suffering from melanoma and in healthy horses. In a clinical study, twenty-
seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9)
and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq)
IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp)
100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and
one selected melanoma was locally treated by intradermal peritumoral
injection. Prior to each injection and on day 120, the sizes of up to nine
melanoma lesions per horse were measured by caliper and ultrasound. Specific
serum antibodies against hgp100 and htyr were measured using cell based flow-
cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements
was performed to identify statistically significant influences on the relative
tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was
performed to compare the relative volumes on the different examination days.
An ANOVA for repeated measurements was performed to analyse changes in body
temperature over time. A one-way ANOVA was used to evaluate differences in
body temperature between the groups. A p–value < 0.05 was considered
significant for all statistical tests applied. Results In all groups, the
relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p <
0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment
group, local treatment and examination modality had no significant influence
on the results (ANOVA for repeated measurements). Neither a cellular nor a
humoral immune response directed against htyr or hgp100 was detected. Horses
had an increased body temperature on the day after vaccination. Conclusions
This is the first clinical report on a systemic effect against equine melanoma
following treatment with DNA vectors encoding eqIL12 and eqIL18 and formulated
with a transfection reagent. Addition of DNA vectors encoding hgp100
respectively htyr did not potentiate this effect
A method of determining where to target surveillance efforts in heterogeneous epidemiological systems
The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question—including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between ‘hosts’ and ‘vectors’—with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled
Do you get us? A multi-experiment, meta-analytic test of the effect of felt understanding in intergroup relations
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record Data and materials for all studies are available on the project OSF page:
https://osf.io/3ye72/?view_only=13a1c3aef3044bc78d94b6ca9c8cf05a.Felt understanding is a key determinant of positive inter-personal relations, but its role and potential benefits in intergroup relations have been neglected. In the first multi-study, pre-registered test of its intergroup effects, we manipulated intergroup felt understanding (understood vs. misunderstood by an outgroup) in six studies (N = 1195) and meta-analyzed its effects. The results in most intergroup contexts supported the prediction that feeling understood (vs. misunderstood) would lead to more positive intergroup orientations (r = 0.25) and action intentions (r = 0.12). These effects were distinct from the effects of feeling liked by an outgroup, which was also manipulated in each study. An important caveat was that the felt understanding manipulation's effect reversed when the outgroup was stereotypically low in competence, but high in warmth (older adults). Overall, the findings indicate the value of incorporating felt understanding into models of intergroup relations and how those relations can be improved
Cognitive Behavior Therapy for Anxious Adolescents: Developmental Influences on Treatment Design and Delivery
Anxiety disorders in adolescence are common and disruptive, pointing to a need for effective treatments for this age group. Cognitive behavior therapy (CBT) is one of the most popular interventions for adolescent anxiety, and there is empirical support for its application. However, a significant proportion of adolescent clients continue to report anxiety symptoms post-treatment. This paper underscores the need to attend to the unique developmental characteristics of the adolescent period when designing and delivering treatment, in an effort to enhance treatment effectiveness. Informed by the literature from developmental psychology, developmental psychopathology, and clinical child and adolescent psychology, we review the ‘why’ and the ‘how’ of developmentally appropriate CBT for anxious adolescents. ‘Why’ it is important to consider developmental factors in designing and delivering CBT for anxious adolescents is addressed by examining the age-related findings of treatment outcome studies and exploring the influence of developmental factors, including cognitive capacities, on engagement in CBT. ‘How’ clinicians can developmentally tailor CBT for anxious adolescents in six key domains of treatment design and delivery is illustrated with suggestions drawn from both clinically and research-oriented literature. Finally, recommendations are made for research into developmentally appropriate CBT for anxious adolescents
Accuracy of Herdsmen Reporting versus Serologic Testing for Estimating Foot-and-Mouth Disease Prevalence
Herdsman-reported disease prevalence is widely used in veterinary epidemiologic studies, especially for diseases with visible external lesions; however, the accuracy of such reports is rarely validated. Thus, we used latent class analysis in a Bayesian framework to compare sensitivity and specificity of herdsman reporting with virus neutralization testing and use of 3 nonstructural protein ELISAs for estimates of foot-and-mouth disease (FMD) prevalence on the Adamawa plateau of Cameroon in 2000. Herdsman-reported estimates in this FMD-endemic area were comparable to those obtained from serologic testing. To harness to this cost-effective resource of monitoring emerging infectious diseases, we suggest that estimates of the sensitivity and specificity of herdsmen reporting should be done in parallel with serologic surveys of other animal diseases.Fil: Morgan, Kenton L.. University of Liverpool; Reino UnidoFil: Handel, Ian G.. University of Edinburgh; Reino UnidoFil: Tanya, Vincent N.. Institute of Agricultural Research for Development; Camerún. Ministry of Scientific Research and Innovation; CamerúnFil: Hamman, Saidou M.. Institute of Agricultural Research for Development; CamerúnFil: Nfon, Charles. Institute of Agricultural Research for Development; CamerúnFil: Bergmann, Ingrid Evelyn. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentina. Pan American Foot and Mouth Disease Center; BrasilFil: Malirat, Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentina. Pan American Foot and Mouth Disease Center; BrasilFil: Sorensen, Karl J.. Danish Veterinary Institute for Virus Research; DinamarcaFil: Bronsvoort, Barend M de C,. University of Edinburgh; Reino Unid
- …