301 research outputs found

    Radio Continuum Emission from the Magnetar SGR J1745-2900: Interaction with Gas Orbiting Sgr A*

    Full text link
    We present radio continuum light curves of the magnetar SGR J1745−-2900 and Sgr A* obtained with multi-frequency, multi-epoch Very Large Array observations between 2012 and 2014. During this period, a powerful X-ray outburst from SGR J1745−-2900 occurred on 2013-04-24. Enhanced radio emission is delayed with respect to the X-ray peak by about seven months. In addition, the flux density of the emission from the magnetar fluctuates by a factor of 2 to 4 at frequencies between 21 and 41 GHz and its spectral index varies erratically. Here we argue that the excess fluctuating emission from the magnetar arises from the interaction of a shock generated from the X-ray outburst with the orbiting ionized gas at the Galactic center. In this picture, variable synchrotron emission is produced by ram pressure variations due to inhomogeneities in the dense ionized medium of the Sgr A West bar. The pulsar with its high transverse velocity is moving through a highly blue-shifted ionized medium. This implies that the magnetar is at a projected distance of ∌0.1\sim0.1 pc from Sgr A* and that the orbiting ionized gas is partially or largely responsible for a large rotation measure detected toward the magnetar. Despite the variability of Sgr A* expected to be induced by the passage of the G2 cloud, monitoring data shows a constant flux density and spectral index during this periodComment: 12 pages, 3 figures, ApJL (in press

    “Feeling Warmth and Close to Her”: Communication and Resilience Reflected in Turning Points in Positive Adult Stepchild–Stepparent Relationships

    Get PDF
    With the goal of understanding the development of positive stepchild–stepparent relationships, the researchers focused on turning points characterizing the interaction of adult stepchildren who have a positive bond with a stepparent. Engaging a relational turning points perspective, 38 stepchildren (males and females, ages 25 to 52 years old) who reported a positive stepparent relationship were interviewed, generating 269 turning points which were categorized into 15 turning point types and coded by valence. Turning points occurring most frequently were: prosocial actions, quality time, conflict/ disagreement, changes in household/family composition, and rituals. Findings are discussed, including implications for developing and enacting resilient and positive stepchild–stepparent relationships and future directions for researchers wanting to focus on positive family interaction

    “Feeling Warmth and Close to Her”: Communication and Resilience Reflected in Turning Points in Positive Adult Stepchild–Stepparent Relationships

    Get PDF
    With the goal of understanding the development of positive stepchild–stepparent relationships, the researchers focused on turning points characterizing the interaction of adult stepchildren who have a positive bond with a stepparent. Engaging a relational turning points perspective, 38 stepchildren (males and females, ages 25 to 52 years old) who reported a positive stepparent relationship were interviewed, generating 269 turning points which were categorized into 15 turning point types and coded by valence. Turning points occurring most frequently were: prosocial actions, quality time, conflict/ disagreement, changes in household/family composition, and rituals. Findings are discussed, including implications for developing and enacting resilient and positive stepchild–stepparent relationships and future directions for researchers wanting to focus on positive family interaction

    Exact solution of kinetic analysis for thermally activated delayed fluorescence materials

    Get PDF
    Research at Kyushu, Kyoto and St Andrews Universities was supported by EPSRC and JSPS Core to Core grants (JSPS Core-to-core Program; EPSRC grant number EP/R035164/1). Authors are also grateful for financial support from the Program for Building Regional Innovation Ecosystems of the Ministry of Education, Culture, Sports, Science and Technology, Japan, JST ERATO Grant JPMJER1305, JSPS KAKENHI JP20H05840, and Kyulux Inc.The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become instrumental to providing insight into their stability and performance, which is not only relevant for organic light-emitting diodes (OLED), but also for other applications such as sensing, imaging and photocatalysis. Thus, a deeper understanding of the photophysics underpinning the TADF mechanism is required to push materials design further. Previously reported analyses in the literature of the kinetics of the various processes occurring in a TADF material rely on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing (ISC and RISC, respectively). In this report, we demonstrate a method to determine these rate constants using a three-state model together with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact rate equations, greatly facilitating a comparison of the TADF properties of structurally diverse emitters and providing a comprehensive understanding of the photophysics of these systems.PostprintPostprintPeer reviewe

    Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences

    Get PDF
    A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf

    Democratic cultural policy : democratic forms and policy consequences

    Get PDF
    The forms that are adopted to give practical meaning to democracy are assessed to identify what their implications are for the production of public policies in general and cultural policies in particular. A comparison of direct, representative, democratic elitist and deliberative versions of democracy identifies clear differences between them in terms of policy form and democratic practice. Further elaboration of these differences and their consequences are identified as areas for further research

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed
    • 

    corecore