21 research outputs found

    Kink pair production and dislocation motion

    Get PDF
    The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors

    First-principles prediction of kink-pair activation enthalpy on screw dislocations in bcc transition metals: V, Nb, Ta, Mo, W, and Fe

    No full text
    International audienceThe atomistic study of kink pairs on screw dislocations in body-centered cubic (bcc) metals is challenging because interatomic potentials in bcc metals still lack accuracy and kink pairs require too many atoms to be modeled by first principles. Here, we circumvent this difficulty using a one-dimensional line tension model whose parameters, namely the line tension and Peierls barrier, are reachable to density functional theory calculations. The model parameterized in V, Nb, Ta, Mo, W, and Fe, is used to study the kink-pair activation enthalpy and spatial extension. Interestingly, we find that the atomistic line tension is more than twice the usual elastic estimates. The calculations also show interesting group tendencies with the line tension and kink-pair width larger in group V than in group VI elements. Finally, the present kink-pair activation energies are shown to compare qualitatively with experimental data and potential origins of quantitative discrepancies are discussed

    Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals

    No full text
    International audienceA density functional theory (DFT) study of the 1/2⟨111⟩ screw dislocation was performed in the following body-centered cubic transition metals: V, Nb, Ta, Cr, Mo, W, and Fe. The energies of the easy, hard, and split core configurations, as well as the pathways between them, were investigated and used to generate the two-dimensional (2D) Peierls potential, i.e. the energy landscape seen by the dislocation as a function of its position in the (111) plane. In all investigated elements, the nondegenerate easy core is the minimum energy configuration, while the split core configuration, centered in the immediate vicinity of a ⟨111⟩ atomic column, has a high energy near or above that of the hard core. This unexpected result yields 2D Peierls potentials very different from the usually assumed landscapes. The 2D Peierls potential in Fe differs from the other transition metals, with a monkey saddle instead of a local maximum located at the hard core. An estimation of the Peierls stress from the shape of the Peierls barrier is presented in all investigated metals. A strong group dependence of the core energy is also evidenced, related to the position of the Fermi level with respect to the minimum of the pseudogap of the electronic density of states

    Ecological fidelity and spatiotemporal resolution of arthropod death assemblages from rodent middens in the central Atacama Desert (northern Chile)

    No full text
    International audienceEcological fidelity and spatiotemporal resolution of arthropod death assemblages from rodent middens in the central Atacama Desert (northern Chile

    Ab Initio Models of Dislocations

    No full text
    International audienceThis chapter reviews the different methodological aspects of the ab ini-tio modeling of dislocations. Such simulations are now frequently used to study the dislocation core, i.e. the region in the immediate vicinity of the line defect where the crystal is so strongly distorted that an atomic description is needed. This core region controls some dislocation fundamental properties, like their ability to glide in different crystallographic planes. Ab initio calculations based on the density functional theory offer a predictive way to model this core region. Because dislocations break the periodicity of the crystal and induce long range elastic fields, several specific approaches relying on different boundary conditions have been developed to allow for the atomistic modeling of these defects in simulation cells having a size compatible with ab initio calculations. We describe these different approaches which can be used to study dislocations with ab initio calculations and introduce the different analyses which are currently performed to characterize the core structure, before discussing how meaningful energy properties can be extracted from such simulations

    Terrestrial support of aquatic food webs depends on light inputs: a geographically-replicated test using tank bromeliads

    Get PDF
    Food webs of freshwater ecosystems can be subsidized by allochthonous resources. However, it is still unknown which environmental factors regulate the relative consumption of allochthonous resources in relation to autochthonous resources. Here, we evaluated the importance of allochthonous resources (litterfall) for the aquatic food webs in Neotropical tank bromeliads, a naturally replicated aquatic microcosm. Aquatic invertebrates were sampled in more than 100 bromeliads within either open or shaded habitats and within five geographically distinct sites located in four different countries. Using stable isotope analyses, we determined that allochthonous sources comprised 74% (±17%) of the food resources of aquatic invertebrates. However, the allochthonous contribution to aquatic invertebrates strongly decreased from shaded to open habitats, as light incidence increased in the tanks. The density of detritus in the tanks had no impact on the importance of allochthonous sources to aquatic invertebrates. This overall pattern held for all invertebrates, irrespective of the taxonomic or functional group to which they belonged. We concluded that, over a broad geographic range, aquatic food webs of tank bromeliads are mostly allochthonous‐based, but the relative importance of allochthonous subsidies decreases when light incidence favors autochthonous primary production. These results suggest that, for other freshwater systems, some of the between‐study variation in the importance of allochthonous subsidies may similarly be driven by the relative availability of autochthonous resources
    corecore