175 research outputs found

    Modeling terahertz emissions from energetic electrons and ions in foil targets irradiated by ultraintense femtosecond laser pulses

    Full text link
    Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchrotron radiation due to their deflection and deceleration in the sheath field they set up in vacuum. After showing that both mechanisms tend to largely compensate each other when all the electrons are pulled back into the target, we investigate the scaling of the net radiation with the sheath field strength. We then demonstrate the sensitivity of this radiation to a percent-level fraction of escaping electrons. We also study the influence of the target thickness and laser focusing. The same sheath field that confines most of the fast electrons around the target rapidly sets into motion the surface ions. We describe the THz emission from these accelerated ions and their accompanying hot electrons by means of a plasma expansion model that allows for finite foil size and multidimensional effects. Again, we explore the dependencies of this radiation mechanism on the laser-target parameters. Under conditions typical of current ultrashort laser-solid experiments, we find that the THz radiation from the expanding plasma is much less energetic -- by one to three orders of magnitude -- than that due to the early-time motion of the fast electrons

    Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    Get PDF
    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code VORPAL using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver

    Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2

    Get PDF
    Summary We report the clinical features of 12 families with autosomal dominant spastic paraplegia (ADSP) linked to the SPG4 locus on chromosome 2p, the major locus for this disorder that accounts for ∼40% of the families. Among 93 gene carriers, 32 (34%) were unaware of symptoms but were clinically affected. Haplotype reconstruction showed that 90% of the asymptomatic gene carriers presented increased reflexes and/or extensor plantar responses independent of age at examination. The mean age at onset was 29 years, ranging from 1 to 63 years. Intra- as well as inter-familial variability of age at onset was important, but did not result from anticipation. Phenotype—genotype correlations and comparison with SPG3 and SPG5 families indicated that despite the variability of age at onset, SPG4 is a single genetic entity but no clinical features distinguish individual SPG4 patients from those with SPG3 or SPG5 mutation

    The LUNEX5 project

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/froa03.pdfInternational audienceLUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, and coherent pulses in the soft X-ray region. The project consists of a Free Electron Laser (FEL) line enabling the most advanced seeding configurations: High order Harmonic in Gas (HHG) seeding and Echo Enable Harmonic Generation (EEHG) with in-vacuum (potentially cryogenic) undulators of 15 and 30 mm period. Two accelerator types feed this FEL line : a 400 MeV Conventional Linear Accelerator (CLA) using superconducting cavities compatible with a future upgrade towards high repetition rate, for the investigations of the advanced FEL schemes; and a 0.4 - 1 GeV Laser Wake Field Accelerator (LWFA), to be qualified in view of FEL application, in the single spike or seeded regime. Two pilot user experiments for timeresolved studies of isolated species and solid state matter dynamics will take benefit of LUNEX5 FEL radiation and provide feedback of the performance of the different schemes under real user conditions

    Spatiotemporal dynamics of ultrarelativistic beam-plasma instabilities

    Get PDF
    An electron or electron-positron beam streaming through a plasma is notoriously prone to micro-instabilities. For a dilute ultrarelativistic infinite beam, the dominant instability is a mixed mode between longitudinal two-stream and transverse filamentation modes, with a phase velocity oblique to the beam velocity. A spatiotemporal theory describing the linear growth of this oblique mixed instability is proposed, which predicts that spatiotemporal effects generally prevail for finite-length beams, leading to a significantly slower instability evolution than in the usually assumed purely temporal regime. These results are accurately supported by particle-in-cell (PIC) simulations. Furthermore, we show that the self-focusing dynamics caused by the plasma wakefields driven by finite-width beams can compete with the oblique instability. Analyzed through PIC simulations, the interplay of these two processes in realistic systems bears important implications for upcoming accelerator experiments on ultrarelativistic beam-plasma interactions

    Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with SPG7

    Get PDF
    Objective : We took advantage of a large multinational recruitment to delineate genotype-phenotype correlations in a large, trans-European multicenter cohort of patients with spastic paraplegia gene 7 (SPG7). Methods : We analyzed clinical and genetic data from 241 patients with SPG7, integrating neurologic follow-up data. One case was examined neuropathologically. Results : Patients with SPG7 had a mean age of 35.5 +/- 14.3 years (n = 233) at onset and presented with spasticity (n = 89), ataxia (n = 74), or both (n = 45). At the first visit, patients with a longer disease duration (> 20 years, n = 62) showed more cerebellar dysarthria (p < 0.05), deep sensory loss (p < 0.01), muscle wasting (p < 0.01), ophthalmoplegia (p < 0.05), and sphincter dysfunction (p < 0.05) than those with a shorter duration (< 10 years, n = 93). Progression, measured by Scale for the Assessment and Rating of Ataxia evaluations, showed a mean annual increase of 1.0 +/- 1.4 points in a subgroup of 30 patients. Patients homozygous for loss of function (LOF) variants (n = 65) presented significantly more often with pyramidal signs (p < 0.05), diminished visual acuity due to optic atrophy (p < 0.0001), and deep sensory loss (p < 0.0001) than those with at least 1 missense variant (n = 176). Patients with at least 1 Ala510Val variant (58%) were older (age 37.6 +/- 13.7 vs 32.8 +/- 14.6 years, p < 0.05) and showed ataxia at onset (p < 0.05). Neuropathologic examination revealed reduction of the pyramidal tract in the medulla oblongata and moderate loss of Purkinje cells and substantia nigra neurons. Conclusions : This is the largest SPG7 cohort study to date and shows a spasticity-predominant phenotype of LOF variants and more frequent cerebellar ataxia and later onset in patients carrying at least 1 Ala510Val variant

    Transcriptional Analysis of Distant Signaling Induced by Insect Elicitors and Mechanical Wounding in Zea mays

    Get PDF
    When plants are under insect herbivore attack defensive measures are activated not only locally, but also in distant and systemic tissues. While insect elicitors (IE) abundant in the oral secretions of the attacking herbivore are essential in the regulation of induced defenses, little is known about their effects on systemic defense signaling in maize (Zea mays). The goal of this study was therefore to identify genetic markers that can be used to further characterize local and systemic signaling events induced by IE or mechanical wounding (MW). We selected genes for this study based on their putative involvement in signaling (allene oxide synthase), regulation of gene expression (transcription factor MYC7), and in direct defenses (ribosome inactivating protein) and analyzed their expression in different sections of the treated leaf as well as in systemic parts of the same plant. We found the most significant transcript accumulation of the selected genes after treatment with insect elicitors in those parts with increased JA levels. Additionally, treatment with IE did also induce the accumulation of MYC7 transcripts in basal parts of the treated leaf and systemically. MW, in contrast, did induce RIP and AOS only locally, but not MYC7. This local suppression of MYC7 was further studied by adding glutathione (GSH) as an electron donor to MW plants to quench putative α, β-unsaturated carbonyls, which build up to significant levels around the damage site. Indeed, GSH-treated MW plants accumulated MYC7 at the damage site and also produced more volatiles, suggesting a putative redox-regulatory element being involved in the suppression of MYC7. The results presented herein provide evidence for the specific induction of distant signaling events triggered by IE, most likely through electric signaling. Additionally, a putative role for MW-induced α, β-unsaturated carbonyls in the transcriptional regulation of defense genes was discovered
    corecore