213 research outputs found

    Reaction forces of laminated glass windows subject to blast loads

    Get PDF
    Several blast trials on laminated glass windows have been performed in the past, using both full field 3D Digital Image Correlation and strain gauges located on the supporting structure to collect information on the glass pane behaviour. The data obtained during three blast experiments were employed to calculate reaction forces throughout the perimeter supports both before and after the fracture of the glass layers. The pre-crack experimental data were combined with finite element modelling results to achieve this, whilst solely experimental results were employed for post-cracked reactions. The results for the three blast experiments were compared to identify similarities in their behaviour. It is intended that the results can be used to improve the existing spring–mass systems used for the design of blast resistant windows

    A numerical method for predicting the deformation of crazed laminated windows under blast loading

    Get PDF
    The design of laminated glazing for blast resistance is significantly complicated by the post-crack behaviour of glass layers. In this research, a novel numerical method based on a semi-analytical energy model is proposed for the post-crack behaviour of crazed panes. To achieve this, the non-homogenous glass cracks patterns observed in literature experimental and analytical work was taken into consideration. It was assumed that, after the glass crazing, further deformations would occur in the cracked edge areas, whilst the central window surface would remain largely undeformed. Therefore, different internal work expressions were formulated for each zone and were then combined in the overall model. The resulting differential equation was then solved numerically. The results obtained were compared with data from four experimental full-scale blast tests for validation. Three of these blast tests (Tests 1–3) were presented previously (Hooper et al., 2012) on 1.5 × 1.2 m laminated glazing samples made up with two 3 mm glass layers and a central 1.52 mm PVB membrane, using a 15 and 30 kg charge masses (TNT equivalent) at 13–16 m stand-off. The fourth blast test (Test 4) was conducted on a larger 3.6 × 2.0 m pane of 13.52 mm thickness, using a 100 kg charge mass (TNT equivalent) at a 17 m stand-off. All blast tests employed the Digital Image Correlation (DIC) technique to obtain 3D out-of-plane deflections and strains.The proposed analytical method reproduced the experimental deflection profiles, with the best estimates obtained for the more severe loading cases. Reaction forces were also compared with experimental estimates. The predictive ability of the proposed method could permit more accurate designs to be produced rapidly, improving structures resistance to such loadings

    Ground reaction force differences in the countermovement jump in girls with different levels of performance

    Get PDF
    Purpose: The aim of this study was to ascertain the biomechanical differences between better and poorer performers of the vertical jump in a homogeneous group of children. Method: Twenty-four girls were divided into low-scoring (LOW; M age = 6.3 ± 0.8 years) and high-scoring (HIGH; M age = 6.6 ± 0.8 years) groups based on their performance on the vertical jump. The force-, velocity-, displacement-, and rate of force development (RFD)-time curves of vertical jumps were analyzed to determine the differences between groups. Results: The analysis of the data showed differences in the pattern of the ensemble mean curves of the HIGH and LOW groups, although the majority of the differences occurred during the eccentric contraction phase of the jump. The differences in the HIGH group with respect to the LOW group were: lower force at the beginning of the movement, higher speed and RFD during the eccentric phase, high force at the beginning of the concentric phase, higher velocity during the concentric phase, and a higher position at takeoff. Conclusion: The results showed that the HIGH group achieved a higher jump height than did the LOW group by increasing the effectiveness of the countermovement and achieving a more advantageous position at takeoff.Centro de Investigación en Rendimiento Físico y Deportiv

    Exercise recommendations for people with bone metastases: Expert consensus for healthcare providers and clinical exercise professionals

    Get PDF
    Purpose: Exercise has been underutilized in people with advanced or incurable cancer despite the potential to improve physical function and reduce psychosocial morbidity, especially for people with bone metastases because of concerns over skeletal complications. The International Bone Metastases Exercise Working Group (IBMEWG) was formed to develop best practice recommendations for exercise programming for people with bone metastases on the basis of published research, clinical experience, and expert opinion. Methods: The IBMEWG undertook sequential steps to inform the recommendations: (1) modified Delphi survey, (2) systematic review, (3) cross-sectional survey to physicians and nurse practitioners, (4) in-person meeting of IBMEWG to review evidence from steps 1-3 to develop draft recommendations, and (5) stakeholder engagement. Results: Recommendations emerged from the contributing evidence and IBMEWG discussion for pre-exercise screening, exercise testing, exercise prescription, and monitoring of exercise response. Identification of individuals who are potentially at higher risk of exercise-related skeletal complication is a complex interplay of these factors: (1) lesion-related, (2) cancer and cancer treatment–related, and (3) the person-related. Exercise assessment and prescription requires consideration of the location and presentation of bone lesion(s) and should be delivered by qualified exercise professionals with oncology education and exercise prescription experience. Emphasis on postural alignment, controlled movement, and proper technique is essential. Conclusion: Ultimately, the perceived risk of skeletal complications should be weighed against potential health benefits on the basis of consultation between the person, health care team, and exercise professionals. These recommendations provide an initial framework to improve the integration of exercise programming into clinical care for people with bone metastases

    Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions

    Get PDF
    It is self-evident that a crucial step in analysing the performance of protective structures is to be able to accurately quantify the blast load arising from a high explosive detonation. For structures located near to the source of a high explosive detonation, the resulting pressure is extremely high in magnitude and highly non-uniform over the face of the target. There exists very little direct measurement of blast parameters in the nearfield, mainly attributed to the lack of instrumentation sufficiently robust to survive extreme loading events yet sensitive enough to capture salient features of the blast. Instead literature guidance is informed largely by early numerical analyses and parametric studies. Furthermore, the lack of an accurate, reliable data set has prevented subsequent numerical analyses from being validated against experimental trials. This paper presents an experimental methodology that has been developed in part to enable such experimental data to be gathered. The experimental apparatus comprises an array of Hopkinson pressure bars, fitted through holes in a target, with the loaded faces of the bars flush with the target face. Thus, the bars are exposed to the normally or obliquely reflected shocks from the impingement of the blast wave with the target. Pressure-time recordings are presented along with associated Arbitary-Langrangian-Eulerian modelling using the LS-DYNA explicit numerical code. Experimental results are corrected for the effects of dispersion of the propagating waves in the pressure bars, enabling accurate characterisation of the peak pressures and impulses from these loadings. The combined results are used to make comments on the mechanism of the pressure load for very near-field blast events

    Determining Material Response for Polyvinyl Butyral (PVB) in Blast Loading Situations

    Get PDF
    Protecting structures from the effect of blast loads requires the careful design of all building components. In this context, the mechanical properties of Polyvinyl Butyral (PVB) are of interest to designers as the membrane behaviour will affect the performance of laminated glass glazing when loaded by explosion pressure waves. This polymer behaves in a complex manner and is difficult to model over the wide range of strain rates relevant to blast analysis. In this study, data from experimental tests conducted at strain rates from 0.01 s−1 to 400 s−1 were used to develop material models accounting for the rate dependency of the material. Firstly, two models were derived assuming Prony series formulations. A reduced polynomial spring and a spring derived from the model proposed by Hoo Fatt and Ouyang were used. Two fits were produced for each of these models, one for low rate cases, up to 8 s−1, and one for high rate cases, from 20 s−1. Afterwards, a single model representing all rates was produced using a finite deformation viscoelastic model. This assumed two hyperelastic springs in parallel, one of which was in series with a non-linear damper. The results were compared with the experimental results, assessing the quality of the fits in the strain range of interest for blast loading situations. This should provide designers with the information to choose between the available models depending on their design needs

    Exercise for individuals with bone metastases: A systematic review

    Get PDF
    Background Exercise has the potential to improve physical function and quality of life in individuals with bone metastases but is often avoided due to safety concerns. This systematic review summarizes the safety, feasibility and efficacy of exercise in controlled trials that include individuals with bone metastases. Methods MEDLINE, Embase, Pubmed, CINAHL, PEDro and CENTRAL databases were searched up to July 16, 2020. Results A total of 17 trials were included incorporating aerobic exercise, resistance exercise or soccer interventions. Few (n=4, 0.5%) serious adverse events were attributed to exercise participation, with none related to bone metastases. Mixed efficacy results were found, with exercise eliciting positive changes or no change. The majority of trials included an element of supervised exercise instruction (n=16, 94%) and were delivered by qualified exercise professionals (n=13, 76%). Conclusions Exercise appears safe and feasible for individuals with bone metastases when it includes an element of supervised exercise instruction

    SED fitting of nearby galaxies in the Herschel Reference Survey

    Get PDF
    We compute UV to radio continuum spectral energy distributions of 51 nearby galaxies recently observed with SPIRE onboard Herschel and present infrared colours (in the 25-500 μm spectral range). SPIRE data of normal galaxies are well reproduced with a modified black body (β=2) of temperature T≅q 20 K. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties
    • …
    corecore