923 research outputs found

    Autonomous gathering of livestock using a multi-functional sensor network platform

    Get PDF
    In this paper we develop algorithms and hardware for the autonomous gathering of cattle. We present a comparison of three different autonomous gathering algorithms that employ sound and/or electric stimuli to guide the cattle. We evaluate these algorithms in simulation by extending previous behavioral simulations for cattle. We implemented one of these algorithms and present data from experiments in which cattle were equipped with sensor nodes that allowed cueing with sound and electric stimuli. We discuss the minimum requirements for algorithms and hardware for autonomous gathering

    Vegetable oil paints

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141861/1/aocs0513.pd

    Charter Schools and Students with Disabilities: Admissions Equity

    Full text link
    Many states are now offering parents a choice in where their child attends school, typically offering charter schools as the alternative to public schools. With charter school enrollment on the rise, questions have begun to arise regarding the acceptance rates of students with disabilities, specifically, how do students with disabilities fare in the process of being admitted to charter schools? This research examines the admissions policies of charter schools, the admission rates for students with disabilities, as well as the legality and equity of this topic. Previous research has found that charter schools typically do not accept as many students with disabilities due to increased difficulties in providing education for these students. This topic is of the utmost importance due to the ever-growing number of charter schools, charter school enrollment, and students with disabilities. This topic was researched through a literature review of existing research on the topics of charter schools, charter school admissions, and the education of students with disabilities in charter schools. This research found that many charter schools do not accept students with disabilities proportionally as they are enrolled in public schools; however, this practice is legal in most states. This research adds to previous findings on this topic by suggesting strategies for how charter schools could improve their admissions and education process in order to make education equitable for students with disabilities

    Effect of continuous nutrient enrichment on microalgae colonizing hard substrates

    Get PDF
    In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed

    Removing Orbital Debris with Lasers

    Full text link
    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.Comment: 37 pages, 15 figures, in preparation for submission to Advances in Space Researc

    Design and Evaluation of Sensor Housing for Boundary Layer Profiling Using Multirotors

    Get PDF
    Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions

    Nuances in Bottom-Up Interpretations: Colombia\u27s and Guatemala\u27s Radically Different Approaches to Transitional Justice

    Full text link
    Scholars have treated “bottom-up” transitional justice processes as a non-nuanced whole, situating grassroots actors in direct opposition to large-scale, or “top-down,” approaches to transitional justice. Such an analysis is limited because it fails to take into account complex contextual factors that contribute to the ways in which bottom-up mechanisms manifest. Colombia and Guatemala are two cases in which bottom-up actors have strived to influence the ways in which peace and justice were articulated by their respective governments; however, the methods and outcomes are strikingly different. In Guatemala, grassroots actors sought to achieve ethnic inclusion, neglecting class and land-based demands. Colombia’s grassroots groups, however, have favored an anti-hegemonic approach through which bottom-up actors seek to redefine transitional justice in anti-hegemonic terms, frequently favoring radical land reform and redistribution and opposing neoliberal forms of post-conflict development. I argue that there are three primary variables influencing how bottom-up actors in Colombia and Guatemala responded to civil conflict and articulated transitional justice: 1. The ethnic nature of the conflict and the delineation of victims and perpetrators. 2. The countries’ respective access to resources 3. The role of religion (Catholic Liberation theology vs. conservative evangelism

    Design and Evaluation of Sensor Housing for Boundary Layer Profiling Using Multirotors

    Get PDF
    Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions

    Trauma ICU Prevalence Project: the diversity of surgical critical care.

    Get PDF
    Background:Surgical critical care is crucial to the care of trauma and surgical patients. This study was designed to provide a contemporary assessment of patient types, injuries, and conditions in intensive care units (ICU) caring for trauma patients. Methods:This was a multicenter prevalence study of the American Association for the Surgery of Trauma; data were collected on all patients present in participating centers' trauma ICU (TICU) on November 2, 2017 and April 10, 2018. Results:Forty-nine centers submitted data on 1416 patients. Median age was 58 years (IQR 41-70). Patient types included trauma (n=665, 46.9%), non-trauma surgical (n=536, 37.8%), medical (n=204, 14.4% overall), or unspecified (n=11). Surgical intensivists managed 73.1% of patients. Of ICU-specific diagnoses, 57% were pulmonary related. Multiple high-intensity diagnoses were represented (septic shock, 10.2%; multiple organ failure, 5.58%; adult respiratory distress syndrome, 4.38%). Hemorrhagic shock was seen in 11.6% of trauma patients and 6.55% of all patients. The most common traumatic injuries were rib fractures (41.6%), brain (38.8%), hemothorax/pneumothorax (30.8%), and facial fractures (23.7%). Forty-four percent were on mechanical ventilation, and 17.6% had a tracheostomy. One-third (33%) had an infection, and over half (54.3%) were on antibiotics. Operations were performed in 70.2%, with 23.7% having abdominal surgery. At 30 days, 5.4% were still in the ICU. Median ICU length of stay was 9 days (IQR 4-20). 30-day mortality was 11.2%. Conclusions:Patient acuity in TICUs in the USA is very high, as is the breadth of pathology and the interventions provided. Non-trauma patients constitute a significant proportion of TICU care. Further assessment of the global predictors of outcome is needed to inform the education, research, clinical practice, and staffing of surgical critical care providers. Level of evidence:IV, prospective observational study
    corecore