1,836 research outputs found

    Kepler Mission Stellar and Instrument Noise Properties Revisited

    Full text link
    An earlier study of the Kepler Mission noise properties on time scales of primary relevance to detection of exoplanet transits found that higher than expected noise followed to a large extent from the stars, rather than instrument or data analysis performance. The earlier study over the first six quarters of Kepler data is extended to the full four years ultimately comprising the mission. Efforts to improve the pipeline data analysis have been successful in reducing noise levels modestly as evidenced by smaller values derived from the current data products. The new analyses of noise properties on transit time scales show significant changes in the component attributed to instrument and data analysis, with essentially no change in the inferred stellar noise. We also extend the analyses to time scales of several days, instead of several hours to better sample stellar noise that follows from magnetic activity. On the longer time scale there is a shift in stellar noise for solar-type stars to smaller values in comparison to solar values.Comment: 10 pages, 8 figures, accepted by A

    Earth Occultation Imaging of the Low Energy Gamma-Ray Sky with GBM

    Full text link
    The Earth Occultation Technique (EOT) has been applied to Fermi's Gamma-ray Burst Monitor (GBM) to perform all-sky monitoring for a predetermined catalog of hard X-ray/soft gamma-ray sources. In order to search for sources not in the catalog, thus completing the catalog and reducing a source of systematic error in EOT, an imaging method has been developed -- Imaging with a Differential filter using the Earth Occultation Method (IDEOM). IDEOM is a tomographic imaging method that takes advantage of the orbital precession of the Fermi satellite. Using IDEOM, all-sky reconstructions have been generated for ~sim 4 years of GBM data in the 12-50 keV, 50-100 keV and 100-300 keV energy bands in search of sources otherwise unmodeled by the GBM occultation analysis. IDEOM analysis resulted in the detection of 57 sources in the 12-50 keV energy band, 23 sources in the 50-100 keV energy band, and 7 sources in the 100-300 keV energy band. Seventeen sources were not present in the original GBM-EOT catalog and have now been added. We also present the first joined averaged spectra for four persistent sources detected by GBM using EOT and by the Large Area Telescope (LAT) on Fermi: NGC 1275, 3C 273, Cen A, and the Crab

    Modelling the Autocovariance of the Power Spectrum of a Solar-Type Oscillator

    Full text link
    Asteroseismology is able to conduct studies on the interiors of solar-type stars from the analysis of stellar acoustic spectra. However, such an analysis process often has to rely upon subjective choices made throughout. A recurring problem is to determine whether a signal in the acoustic spectrum originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful tool in the analysis of the more than one thousand solar-type stars expected to be observed as part of the Kepler Asteroseismic Investigation (KAI). We apply the aforementioned procedure to simulations of the Sun. Assuming different apparent magnitudes, we address the issues of how accurately and how precisely we can retrieve the several global seismic parameters were the Sun to be observed as part of the KAI.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    The amplitude of solar oscillations using stellar techniques

    Full text link
    The amplitudes of solar-like oscillations depend on the excitation and damping, both of which are controlled by convection. Comparing observations with theory should therefore improve our understanding of the underlying physics. However, theoretical models invariably compute oscillation amplitudes relative to the Sun, and it is therefore vital to have a good calibration of the solar amplitude using stellar techniques. We have used daytime spectra of the Sun, obtained with HARPS and UCLES, to measure the solar oscillations and made a detailed comparison with observations using the BiSON helioseismology instrument. We find that the mean solar amplitude measured using stellar techniques, averaged over one full solar cycle, is 18.7 +/- 0.7 cm/s for the strongest radial modes (l=0) and 25.2 +/- 0.9 cm/s for l=1. In addition, we use simulations to establish an equation that estimates the uncertainty of amplitude measurements that are made of other stars, given that the mode lifetime is known. Finally, we also give amplitudes of solar-like oscillations for three stars that we measured from a series of short observations with HARPS (gamma Ser, beta Aql and alpha For), together with revised amplitudes for five other stars for which we have previously published results (alpha Cen A, alpha Cen B, beta Hyi, nu Ind and delta Pav).Comment: 8 pages, accepted by ApJ. Minor wording changes and added a referenc

    Characterisation of red-giant stars in the public Kepler data

    Full text link
    The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper we characterise the red-giant (G-K) stars in this large sample in terms of their solar-like oscillations. We use published methods and well-known scaling relations in the analysis. Just over 70% of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red-giant branch stars, cool high-luminosity red giants on the red-giant branch and He-core burning clump and secondary-clump giants.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Determining global parameters of the oscillations of solar-like stars

    Full text link
    Helioseismology has enabled us to better understand the solar interior, while also allowing us to better constrain solar models. But now is a tremendous epoch for asteroseismology as space missions dedicated to studying stellar oscillations have been launched within the last years (MOST and CoRoT). CoRoT has already proved valuable results for many types of stars, while Kepler, which was launched in March 2009, will provide us with a huge number of seismic data very soon. This is an opportunity to better constrain stellar models and to finally understand stellar structure and evolution. The goal of this research work is to estimate the global parameters of any solar-like oscillating target in an automatic manner. We want to determine the global parameters of the acoustic modes (large separation, range of excited pressure modes, maximum amplitude, and its corresponding frequency), retrieve the surface rotation period of the star and use these results to estimate the global parameters of the star (radius and mass).To prepare the analysis of hundreds of solar-like oscillating stars, we have developed a robust and automatic pipeline. The pipeline consists of data analysis techniques, such as Fast Fourier Transform, wavelets, autocorrelation, as well as the application of minimisation algorithms for stellar-modelling. We apply our pipeline to some simulated lightcurves from the asteroFLAG team and the Aarhus-asteroFLAG simulator, and obtain results that are consistent with the input data to the simulations. Our strategy gives correct results for stars with magnitudes below 11 with only a few 10% of bad determinations among the reliable results. We then apply the pipeline to the Sun and three CoRoT targets.In particular we determine the parameters of the Sun, HD49933, HD181906, and HD181420.Comment: 15 pages, 17 figures, accepted for publication in A&

    Oscillation mode linewidths and heights of 23 main-sequence stars observed by Kepler

    Get PDF
    Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe the stars using asteroseismology. We provide the mode linewidths and mode heights of the oscillations of various stars as a function of frequency and of effective temperature. We used a time series of nearly two years of data for each star. The 23 stars observed belong to the simple or F-like category. The power spectra of the 23 main-sequence stars were analysed using both maximum likelihood estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths, and mode heights. We study the source of systematic errors in the mode linewidths and mode heights, and we present a way to correct these errors with respect to a common reference fit. Using the correction, we could explain all sources of systematic errors, which could be reduced to less than ±\pm15% for mode linewidths and heights, and less than ±\pm5% for amplitude, when compared to the reference fit. The effect of a different estimated stellar background and a different estimated splitting will provide frequency-dependent systematic errors that might affect the comparison with theoretical mode linewidth and mode height, therefore affecting the understanding of the physical nature of these parameters. All other sources of relative systematic errors are less dependent upon frequency. We also provide the dependence of the so-called linewidth dip, in the middle of the observed frequency range, as a function of effective temperature. We show that the depth of the dip decreases with increasing effective temperature. The dependence of the dip on effective temperature may imply that the mixing length parameter α\alpha or the convective flux may increase with effective temperature.Comment: Accepted by A&A, 38 pages, 35 figures, 26 table

    Determinants of anti-vascular action by combretastatin A-4 phosphate: role of nitric oxide

    Get PDF
    The anti-vascular action of the tubulin binding agent combretastatin A-4 phosphate (CA-4-P) has been quantified in two types of murine tumour, the breast adenocarcinoma CaNT and the round cell sarcoma SaS. The functional vascular volume, assessed using a fluorescent carbocyanine dye, was significantly reduced at 18 h after CA-4-P treatment in both tumour types, although the degree of reduction was very different in the two tumours. The SaS tumour, which has a higher nitric oxide synthase (NOS) activity than the CaNT tumour, showed ~10-fold greater resistance to vascular damage by CA-4-P. This is consistent with our previous findings, which showed that NO exerts a protective action against this drug. Simultaneous administration of CA-4-P with a NOS inhibitor, Nω-nitro-L-arginine (L-NNA), resulted in enhanced vascular damage and cytotoxicity in both tumour types. Administration of diethylamine NO, an NO donor, conferred protection against the vascular damaging effects. Following treatment with CA-4-P, neutrophil infiltration into the tumours, measured by myeloperoxidase (MPO) activity, was significantly increased. Levels of MPO activity also correlated with the levels of vascular injury and cytotoxicity measured in both tumour types. Neutrophilic MPO generates free radicals and may therefore contribute to the vascular damage associated with CA-4-P treatment. MPO activity was significantly increased in the presence of L-NNA, suggesting that the protective effect of NO against CA-4-P-induced vascular injury may be, at least partially, mediated by limiting neutrophil infiltration. The data are consistent with the hypothesis that neutrophil action contributes to vascular injury by CA-4-P and that NO generation acts to protect the tumour vasculature against CA4-P-induced injury. The protective effect of NO is probably associated with an anti-neutrophil action. © 2000 Cancer Research Campaig
    • …
    corecore