3,991 research outputs found

    Strong decays of radially excited vector mesons

    Get PDF
    Motivated by the recent discovery at Orsay of ϕ′ (1680), we study the strong interaction decays of radially excited vector mesons within the framework of the3P0 quark pair creation model. We stress the relative importance of phase space, algebraic spinflavor couplings, and spatial overlaps. Quite a few features of the data can be will understood by the presence of a node in the spatial wave function, but the detailed structure of the modes ρ′→4π remains a serious challenge

    Состояние сексуального здоровья в адаптированном супружестве

    Get PDF
    Описано состояние сексуального здоровья в адаптированном супружестве и выделены его диагностические маркеры.The state of sexual health in adapted marriage is described; its diagnostic markers are emphasized

    Reactions of diiron MU-aminocarbyne complexes containing nitrile ligands

    Get PDF
    The acetonitrile ligand in the mu-aminocarbyne complexes [Fe-2{mu-CN(Me) R}(mu-CO)( CO)(NCMe)(Cp)(2)][SO3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c) (Xyl = 2,6-Me2C6H3) is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe-2{mu-CN( Me) R}(mu-CO)(CO)(X)(Cp)(2)] (X = Br, I, CN). Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic a hydrogens has been used in place of MeCN to form the complexes [Fe-2{mu-CN(Me)R}(mu-CO)(CO)(NCCMe3)(Cp)(2)][SO3CF3] (7a-c). Attempts to replace the nitrile ligand in 3 with carbon nucleophiles ( by reaction with RLi) failed, resulting in decomposition products. However the reaction of 7c with LiC= CTol (Tol = C6H4Me), followed by treatment with HSO3CF3, yielded the imino complex [Fe-2{mu-CN(Me) Xyl}(mu-CO)(CO) {N(H) C(C= CC6H4Me-4) CMe3}(Cp)(2)][SO3CF3] (8), obtained via acetilyde addition at the coordinated NCCMe3

    Addition of alkynes at bridging vinyliminium ligands in diiron complexes: Unprecedented diene formation by enyne-like metathesis

    Get PDF
    The zwitterionic bridging vinyliminium complex [Fe(2){mu-eta 1: eta 3-C(Tol)]=C(CS2)C] = N(Me)2}(mu-CO)(CO)( Cp)(2)] (5a) undergoes the addition of two equivalents of MeO(2)C-C C-CO(2)Me affording the bridging bis-alkylidene complex [Fe(2){mu-eta 1: eta 3-C(Me)C{C(CO(2)Me)C(CO(2)Me)CSC(CO(2)Me)C(CO(2)Me)S}CNMe(2)}(mu-CO)( CO)(Cp)(2)] (6). One alkyne unit inserts into a C-CS(2) bond of the bridging ligand, with consequent rearrangement that leads to the formation of a diene. The reaction shows analogies with the enyne metathesis. The second alkyne is incorporated into the bridging frame via cycloaddition at the thiocarboxylate function, affording a 1,3-dithiolene. The complexes [Fe(2){mu-eta(1): eta(3)-C(R')]=C(CS(2))C=N(Me)(R)}(mu-CO)(CO)(Cp)(2)] (R = Xyl, R' = Tol, 5b; R = p-C(6)H(4)OMe, R' = Me, 5c; Xyl = 2,6-Me(2)C(6)H(3)), treated with MeO(2)C-C C-CO(2)Me and then with HBF(4), undergo the cycloaddition of the alkyne with the dithiocarboxylate group and protonation of the dithiocarboxylate carbon, affording the complexes [Fe(2){mu-eta 1: eta 3-C(R')]=C{C(H)SC(CO(2)Me)C(CO(2)Me)S}C]=N(Me)(R)}(mu-CO)(CO)(Cp)(2)][BF(4)] (R = Xyl, R' = Tol, 7a; R= p-C(6)H(4)OMe, R' = Me, 7b), respectively. The X-ray molecular structure of 6 has been determined

    Addition of protic nucleophiles to alkynyl methoxy carbene ligands in diiron complexes

    Get PDF
    Different protic nucleophiles (i.e. Ph2C=NH, PhSH, MeCO2H, PhOH) can be added to the C equivalent to C bond of [Fe-2{mu-CN(Me)(Xyl)}-(mu-CO)(CO){C(OMe)C equivalent to CTol}(CP)(2)][SO3CF3] (1), affording new diiron alkenyl methoxy carbene complexes. The additions of Ph2C=NH and MeCO2H are regio and stereoselective, resulting in the formation of the 5-aza-1-metalla-1,3,5-hexatriene [Fe-2{mu-CN(Me)(Xyl)}(mu-CO)(CO){C-alpha(OMe)C beta H=C-gamma(Tol)(N=CPh2)}(CP)(2)][SO3CF3](2), and the 2-(acyloxy)alkenyl methoxy carbene complex [Fe-2{mu-CN(Me)(Xyl)}(mu-CO)(CO){C-alpha(OMe)C beta H=C-gamma(Tol)OC(O)Me)}(CP)(2)][CF3SO3] (5); the E isomer of the former and the Z of the latter are formed exclusively. Conversely, the addition of PhSH is regio but not stereoselective; thus, both the E and Z isomers of [Fe-2{mu-CN(Me)(Xyl)}(mu-CO)(CO){C-alpha(OMe)C beta H=C-gamma(Tol)(SPh)}(CP)(2)][SO3CF3](3) are formed in comparable amounts. Compounds 3 and 5 are demethylated upon chromatography through Al2O3, resulting in the formation of the acyl complexes [Fe-2{mu-CN(Me)(Xyl)}(mu-CO)(CO){C-alpha(O)C beta H=C-gamma(Tol)(SPh)}(Cp)(2)](4) and [Fe-2{mu-CN(Me)(Xyl)}(mu-CO)(CO){C-alpha(O)C beta H=C-gamma(Tol)OC(O)Me}(CP)(2)](6), respectively, both with a Z configured C-beta=C-gamma bond. Finally, the reaction of 1 with PhOH proceeds only in the presence of an excess of Et3N affording the 2-(alkoxy)alkenyl acyl complex [Fe-2{mu-CN(Me)(Xyl)}(mu-CO)(CO){C-alpha(O)C beta H=C-gamma(Tol)(OPh)}(CP)(2)](7). The crystal structures of 4 center dot CH2Cl2 and 7 center dot 0.5CH(2)Cl(2) have been determined by X-ray diffraction experiments

    Context, mechanisms and outcomes of integrated care for diabetes mellitus type 2:A systematic review

    Get PDF
    Background: Integrated care interventions for chronic conditions can lead to improved outcomes, but it is not clear when and why this is the case. This study aims to answer the following two research questions: First, what are the context, mechanisms and outcomes of integrated care for people with type 2 diabetes? Second, what are the relationships between context, mechanisms and outcomes of integrated care for people with type 2 diabetes? Methods: A systematic literature search was conducted for the period 2003-2013 in Cochrane and PubMed. Articles were included when they focussed on integrated care and type 2 diabetes, and concerned empirical research analysing the implementation of an intervention. Data extraction was performed using a common data extraction table. The quality of the studies was assessed with the Mixed Methods Appraisal Tool. The CMO model (context + mechanism = outcome) was used to study the relationship between context factors (described by the barriers and facilitators encountered in the implementation process and categorised at the six levels of the Implementation Model), mechanisms (defined as intervention types and described by their number of Chronic Care Model (sub-) components) and outcomes (the intentional and unintentional effects triggered by mechanism and context). Results: Thirty-two studies met the inclusion criteria. Most reported barriers to the implementation process were found at the organisational context level and most facilitators at the social context level. Due to the low number of articles reporting comparable quantitative outcome measures or in-depth qualitative information, it was not possible to make statements about the relationship between context, mechanisms and outcomes. Conclusions: Efficient resource allocation should entail increased investments at the organisational context level where most barriers are expected to occur. It is likely that investments at the social context level will also help to decrease the development of barriers at the organisational context level, especially by increasing staff involvement and satisfaction. If future research is to adequately inform practice and policy regarding the impact of these efforts on health outcomes, focus on the actual relationships between context, mechanisms and outcomes should be actively incorporated into study designs

    Barriers and facilitators to workforce changes in integrated care

    Get PDF
    Introduction: The aim of the study is to investigate the barriers and facilitators to the implementation of workforce changes implemented as part of integrated chronic care interventions. Methods: We used a qualitative multimethod design that combined expert questionnaires, a systematic literature review, and secondary analysis of two case reports. Twenty-five experts, twenty-one studies and two case reports were included in the study. Results: Most barriers related to problematic delivery structures, health professionals’ skills and enthusiasm, IT, funding, culture and cooperation and communication. Most facilitators related to health professionals’ motivation and enthusiasm, good delivery structures, communication and cooperation, IT, patients, leadership and senior management. Overall, similar categories of barriers and facilitators were found. Discussion: We recommend that future research focusses on more complex designs including multiple data sources, as these are better able to capture the complexity of interventions such as integrated care. We recommend that health managers and policy-makers should invest in delivery structures and skills and motivation of health professionals to improve the implementation of workforce changes in integrated chronic care interventions. Conclusion: The added value of the present study lies in its provision of information on which factors might mitigate the success of an intervention, which helps to prevent premature conclusions of ineffectiveness for complex interventions

    Diiron-aminocarbyne complexes with amine or imine ligands: C-N coupling between imine and aminocarbyne ligands promoted by tolylacetilyde addition to [Fe2{m-CN(Me)R}(m-CO)(CO)(NH=CPh2)(Cp)2][SO3CF3]

    Get PDF
    A terminally coordinated CO ligand in the complexes [Fe2{m-CN(Me)R}(m-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; R = Xyl, 1b; Xyl = 2,6-Me2C6H3), is readily displaced by primary and secondary amines (L), in the presence of Me3NO, affording the complexes [Fe2{m-CN(Me)R}(m-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = NH2Et, 4a; R = Xyl, L = NH2Et, 4b; R = Me, L = NH2Pri, 5a; R = Xyl, L = NH2Pri, 5b; R = Xyl, L = NH2C6H11, 6; R = Xyl, L = NH2Ph, 7; R = Xyl, L = NH3, 8; R = Me, L = NHMe2, 9a; R = Xyl, L = NHMe2, 9b; R = Xyl, L= NH(CH2)5, 10). In the absence of Me3NO, NH2Et gives addition at the CO ligand of 1b, yielding [Fe2{CN(Me)(Xyl)}(m-CO)(CO)C(O)NHEt(Cp)2] (11). Carbonyl replacement is also observed in the reaction of 1a-b with pyridine and benzophenone imine, affording [Fe2{m-CN(Me)R}(m-CO)(CO)(L)(Cp)2][SO3CF3] (R= Me, L= Py, 12a; R = Xyl, L= Py, 12b; R= Me, L= HN=CPh2, 13a; R = Xyl, L= HN=CPh2, 13b). The imino complex 13b reacts with p-tolylacetylide leading to the formation of the m-vinylidene-diaminocarbene compound [Fe2-C=C(Tol)C(Ph)2N(H)CN(Me)(Xyl)(m-CO)(CO)(Cp2)] (15) which has been studied by X-ray diffraction

    Nitrile ligands activation in dinuclear aminocarbyne complexes

    Get PDF
    The diiron complexes [Fe(Cp)(CO){μ-η2:η2-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C–N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe–Fe bond. Complexes3a–e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments
    corecore