198 research outputs found

    Distribution of the Bandera Shale of the Marmaton Group, Middle Pennsylvanian of Southeastern Kansas

    Get PDF
    In southeastern Kansas, the Middle Pennsylvanian (Desmoinesian) Bandera Shale consists of sandstone, shale, limestone, and coal deposited between two carbonate formations, the underlying Pawnee Limestone and the overlying Altamont Limestone. Isopach maps and cross sections indicate that the Bandera Shale thickens southeastward towards the Oklahoma and Missouri borders. Analysis of gamma-ray-log signatures, augmented by neutron-log signatures, indicates that the Bandera Shale is rich in mudstone, with sandstones limited to intervals ranging from 10 ft to 30 ft (3-9.1 m) in thickness. Comparisons with previously studied cored and logged siliciclastic portions of overlying Missourian lithologies suggest that the Bandera Shale consists of various proportions of sandstone, siltstone, clay-rich shale, and calcite-cemented sandstone. Exposures of the Bandera Shale in Bourbon County, Kansas, consist of interbedded shale and calcite-cemented, fine-grained sandstone. Sandstone beds, ranging from 3 cm to 20 cm (1.2-7.9 in) in thickness, are, in places, rhythmically laminated with organic-rich and organic-poor lamina forming 2-mm (0.8-in)-thick couplets. Many sandstone bedding surfaces in the lower and middle portion of the Bandera Shale are bioturbated with horizontal feeding trails and some vertical burrows that suggest marine environments. Thicker sandstone units are either trough cross-bedded, with sets up to 1.5 m (4.9 ft) thick, or amalgamated ripple cross-laminated and flaser-laminated. Outcrop observations coupled with subsurface analysis indicated that Bandera Shale in southeastern Kansas was deposited as a siliciclastic complex that prograded westward during a sea-level lowstand. Siliciclastic sediments may have been deposited in a clastic wedge or deltaic complex, but sedimentary characteristics observed in outcrops record marine influence at least along the margins of the complex. Rhythmic stratification within sandstone beds that are interbedded with shale resemble tidal features described elsewhere in the Pennsylvanian of North America and suggest that embayments were present where tidal cells were amplified along a morphologically irregular shoreline. Bioturbated sandstone units, interbedded with clay shale, record high-energy events that influenced sand distribution

    Identifying risks for male street gang affiliation: a systematic review and narrative synthesis

    Get PDF
    Gang violence has increased in recent years. Individuals are becoming gang affiliated younger, and many have suffered historic maltreatment. Subsequent exposure to violence can result in profound consequences, including acute psychological harm. This review aims to identify predictive risk factors for male street gang affiliation. A systematic literature search was conducted utilising PsycINFO, PsycARTICLES, Medline, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews and the Social Policy and Practice databases (from the databases’ inception to 03/04/15). From this search, n=244 peer-reviewed papers were included in an initial scoping review, and n=102 thereafter met criteria for a systematic review; a narrative synthesis follows. Gang members have typically faced numerous historic adversities across multiple domains; individual, family, peers, school and community. Cumulative factors generated an independent risk. The meta-narrative described an overarching failure to safeguard vulnerable individuals, with the motivation for gang affiliation hypothetically arising from an attempt to have their basic needs met. Clinical and research recommendations were made to inform early intervention policy and practice

    Imprinting of the Polycomb Group Gene MEDEA Serves as a Ploidy Sensor in Arabidopsis

    Get PDF
    Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed “triploid block.” Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in seeds with deviating parental contributions. We identified a mutant forming unreduced pollen that enabled us to investigate direct effects of unbalanced parental genome contributions on seed development and to reveal the underlying molecular mechanism of dosage sensitivity. We provide evidence that parent-of-origin–specific expression of the Polycomb group (PcG) gene MEDEA is causally responsible for seed developmental aberrations in Arabidopsis seeds with increased paternal genome contributions. We propose that imprinted expression of PcG genes is an evolutionary conserved mechanism to balance parental genome contributions in embryo nourishing tissues

    Current status of the multinational Arabidopsis community

    Get PDF
    The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community

    Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin

    Get PDF
    Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines(1,2). Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm(3,4). Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. (5)), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Current status of the multinational Arabidopsis community

    Get PDF
    The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community
    corecore