363 research outputs found
Star-forming Clumps in Local Luminous Infrared Galaxies
We present HST narrowband near-infrared imaging of Paα and Paβ emission of 48 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey. These data allow us to measure the properties of 810 spatially resolved star-forming regions (59 nuclei and 751 extranuclear clumps) and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs the star-forming clumps have radii ranging from ~90 to 900 pc and star formation rates (SFRs) of ~1 × 10⁻³ to 10 M⊙ yr⁻¹, with median values for extranuclear clumps of 170 pc and 0.03 M⊙ yr⁻¹. The detected star-forming clumps are young, with a median stellar age of 8.7 Myr, and have a median stellar mass of 5 × 10⁵ M ⊙. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at z = 1–3. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10% to 90%. If local LIRGs are similar to these simulated galaxies, we expect that future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs
Recent Borexino results and prospects for the near future
The Borexino experiment, located in the Gran Sasso National Laboratory, is an
organic liquid scintillator detector conceived for the real time spectroscopy
of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010)
has allowed the first independent measurements of 7Be, 8B and pep fluxes as
well as the first measurement of anti-neutrinos from the earth. After a
purification of the scintillator, Borexino is now in phase II since 2011. We
review here the recent results achieved during 2013, concerning the seasonal
modulation in the 7Be signal, the study of cosmogenic backgrounds and the
updated measurement of geo-neutrinos. We also review the upcoming measurements
from phase II data (pp, pep, CNO) and the project SOX devoted to the study of
sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr
antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de
Moriond EW 201
Recommended from our members
Search for Solar Axions Produced in Reaction with Borexino Detector
A search for 5.5-MeV solar axions produced in the reaction was performed using the Borexino detector. The Compton
conversion of axions to photons, ; the
axio-electric effect, ; the decay of axions into
two photons, ; and inverse Primakoff conversion on
nuclei, , are considered. Model independent
limits on axion-electron (), axion-photon (), and
isovector axion-nucleon () couplings are obtained: and at 1 MeV (90% c.l.). These limits are
2-4 orders of magnitude stronger than those obtained in previous
laboratory-based experiments using nuclear reactors and accelerators.Comment: 11 pages, 7 figures, submitted to Phys.Rev.
Recommended from our members
Measurement of geo-neutrinos from 1353 days of Borexino
We present a measurement of the geo--neutrino signal obtained from 1353 days
of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in
Italy. With a fiducial exposure of (3.69 0.16) proton
year after all selection cuts and background subtraction, we detected
(14.3 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U
ratio of 3.9. This corresponds to a geo-neutrino signal = (38.8
12.0) TNU with just a 6 probability for a null geo-neutrino
measurement. With U and Th left as free parameters in the fit, the relative
signals are = (10.6 12.7) TNU and =
(26.5 19.5) TNU. Borexino data alone are compatible with a mantle
geo--neutrino signal of (15.4 12.3) TNU, while a combined analysis with
the KamLAND data allows to extract a mantle signal of (14.1 8.1) TNU. Our
measurement of a reactor anti--neutrino signal =
84.5 TNU is in agreement with expectations in the presence of
neutrino oscillations.Comment: 9 pages, 6 figure
Final results of Borexino Phase-I on low energy solar neutrino spectroscopy
Borexino has been running since May 2007 at the LNGS with the primary goal of
detecting solar neutrinos. The detector, a large, unsegmented liquid
scintillator calorimeter characterized by unprecedented low levels of intrinsic
radioactivity, is optimized for the study of the lower energy part of the
spectrum. During the Phase-I (2007-2010) Borexino first detected and then
precisely measured the flux of the 7Be solar neutrinos, ruled out any
significant day-night asymmetry of their interaction rate, made the first
direct observation of the pep neutrinos, and set the tightest upper limit on
the flux of CNO neutrinos. In this paper we discuss the signal signature and
provide a comprehensive description of the backgrounds, quantify their event
rates, describe the methods for their identification, selection or subtraction,
and describe data analysis. Key features are an extensive in situ calibration
program using radioactive sources, the detailed modeling of the detector
response, the ability to define an innermost fiducial volume with extremely low
background via software cuts, and the excellent pulse-shape discrimination
capability of the scintillator that allows particle identification. We report a
measurement of the annual modulation of the 7 Be neutrino interaction rate. The
period, the amplitude, and the phase of the observed modulation are consistent
with the solar origin of these events, and the absence of their annual
modulation is rejected with higher than 99% C.L. The physics implications of
phase-I results in the context of the neutrino oscillation physics and solar
models are presented
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun
The Sun is fueled by a series of nuclear reactions that produce the energy
that makes it shine. The primary reaction is the fusion of two protons into a
deuteron, a positron and a neutrino. These neutrinos constitute the vast
majority of neutrinos reaching Earth, providing us with key information about
what goes on at the core of our star. Several experiments have now confirmed
the observation of neutrino oscillations by detecting neutrinos from secondary
nuclear processes in the Sun; this is the first direct spectral measurement of
the neutrinos from the keystone proton-proton fusion. This observation is a
crucial step towards the completion of the spectroscopy of pp-chain neutrinos,
as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
New limits on heavy sterile neutrino mixing in -decay obtained with the Borexino detector
If heavy neutrinos with mass 2 are produced in the
Sun via the decay in a side
branch of pp-chain, they would undergo the observable decay into an electron, a
positron and a light neutrino . In the
present work Borexino data are used to set a bound on the existence of such
decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV 14 MeV to be
respectively. These are tighter limits on the mixing parameters than obtained
in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
Recommended from our members
Spectroscopy of geo-neutrinos from 2056 days of Borexino data
We report an improved geo-neutrino measurement with Borexino from 2056 days
of data taking. The present exposure is
protonyr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain geo-neutrino events. The null
observation of geo-neutrinos with Borexino alone has a probability of (5.9). A geo-neutrino signal from the mantle is
obtained at 98\% C.L. The radiogenic heat production for U and Th from the
present best-fit result is restricted to the range 23-36 TW, taking into
account the uncertainty on the distribution of heat producing elements inside
the Earth.Comment: 4 pages, 4 figure
Recommended from our members
Solar neutrino with Borexino: results and perspectives
Borexino is a unique detector able to perform measurement of solar neutrinos
fluxes in the energy region around 1 MeV or below due to its low level of
radioactive background. It was constructed at the LNGS underground laboratory
with a goal of solar Be neutrino flux measurement with 5\% precision. The
goal has been successfully achieved marking the end of the first stage of the
experiment. A number of other important measurements of solar neutrino fluxes
have been performed during the first stage. Recently the collaboration
conducted successful liquid scintillator repurification campaign aiming to
reduce main contaminants in the sub-MeV energy range. With the new levels of
radiopurity Borexino can improve existing and challenge a number of new
measurements including: improvement of the results on the Solar and terrestrial
neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes;
search for non-standard interactions of neutrino; study of the neutrino
oscillations on the short baseline with an artificial neutrino source (search
for sterile neutrino) in context of SOX project.Comment: 15 pages, 4 figure
- …