38 research outputs found
Tunable Vibrational Band Gaps in One-Dimensional Diatomic Granular Crystals with Three-Particle Unit Cells
We investigate the tunable vibration filtering properties of one-dimensional
diatomic granular crystals composed of arrays of stainless steel spheres and
cylinders interacting via Hertzian contact. The arrays consist of periodically
repeated three-particle unit cells (steel-cylinder-sphere) in which the length
of the cylinder is varied systematically. We apply static compression to
linearize the dynamic response of the crystals and characterize their linear
frequency spectrum. We find good agreement between theoretical dispersion
relation analysis (for infinite systems), state-space analysis (for finite
systems), and experiments. We report the observation of up to three distinct
pass bands and two finite band gaps and show their tunability for variations in
cylinder length and static compression
Granular Media-Based Tunable Passive Vibration Suppressor
and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring isolation (Figure 1). This configuration is referred to as a single-axis vibration suppressor. This invention also includes further designs for the integration of the single-axis vibration suppressor into a six-degree-of-freedom hexapod "Stewart"mounting configuration (Figure 2). By integrating each singleaxis vibration suppressor into a hexapod formation, a payload will be protected in all six degrees of freedom from shock and/or vibration. Additionally, to further enable the application of this device to multiple operational scenarios, particularly in the case of high loads, the vibration suppressor devices can be used in parallel in any array configuration
Recommended from our members
Catch and escapement of fall chinook salmon from Salmon River, Oregon, 1987
Project period: 15 June 1987 to 30 June 198
Periodic Travelling Waves in Dimer Granular Chains
We study bifurcations of periodic travelling waves in granular dimer chains
from the anti-continuum limit, when the mass ratio between the light and heavy
beads is zero. We show that every limiting periodic wave is uniquely continued
with respect to the mass ratio parameter and the periodic waves with the
wavelength larger than a certain critical value are spectrally stable.
Numerical computations are developed to study how this solution family is
continued to the limit of equal mass ratio between the beads, where periodic
travelling waves of granular monomer chains exist
Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces
Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400–600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales
A children’s asthma education program: Roaring Adventures of Puff (RAP), improves quality of life
BACKGROUND: It is postulated that children with asthma who receive an interactive, comprehensive education program would improve their quality of life, asthma management and asthma control compared with children receiving usual care