8 research outputs found

    Cyr61/CCN1 Displays High-Affinity Binding to the Somatomedin B 1–44 Domain of Vitronectin

    Get PDF
    OV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, β-endorphin, and other molecules. domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis

    Structured models of cell migration incorporating molecular binding processes

    Get PDF
    The dynamic interplay between collective cell movement and the various molecules involved in the accompanying cell signalling mechanisms plays a crucial role in many biological processes including normal tissue development and pathological scenarios such as wound healing and cancer. Information about the various structures embedded within these processes allows a detailed exploration of the binding of molecular species to cell-surface receptors within the evolving cell population. In this paper we establish a general spatio-temporal-structural framework that enables the description of molecular binding to cell membranes coupled with the cell population dynamics. We first provide a general theoretical description for this approach and then illustrate it with two examples arising from cancer invasion

    Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation.

    No full text
    Angiostatin, a kringle-containing fragment of plasminogen, is a potent inhibitor of angiogenesis. The mechanism(s) responsible for the anti-angiogenic properties of angiostatin are unknown. We now report that human angiostatin blocks plasmin(ogen)-enhanced in vitro invasion of tissue plasminogen activator (t-PA)-producing endothelial and melanoma cells. Kinetic analyses demonstrated that angiostatin functions as a non-competitive inhibitor of extracellular-matrix (ECM)-enhanced, t-PA-catalysed plasminogen activation, with a Ki of 0.9+/-0.03 microM. This mechanism suggests that t-PA has a binding site for the inhibitor angiostatin, as well as for its substrate plasminogen that, when occupied, prevents ternary complex formation between t-PA, plasminogen and matrix protein. Direct binding experiments confirmed that angiostatin bound to t-PA with an apparent Kd [Kd(app)] of 6.7+/-0.7 nM, but did not bind with high affinity to ECM proteins. Together, these data suggest that angiostatin in the cellular micro-environment can inhibit matrix-enhanced plasminogen activation, resulting in reduced invasive activity, and suggest a biochemical mechanism whereby angiostatin-mediated regulation of plasmin formation could influence cellular migration and invasion

    Insulin-like Growth Factor Axis Elements in Breast Cancer Progression

    No full text
    corecore