537 research outputs found

    Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation : a tale of the unexpected

    Get PDF
    ObjectiveTo assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state.MethodsWe studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals.ResultsThe index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis.ConclusionWe report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms

    Day versus night use of forest by red and roe deer as determined by Corine Land Cover and Copernicus Tree Cover Density: assessing use of geographic layers in movement ecology

    Get PDF
    Diel use of forest and open habitats by large herbivores is linked to species-specific needs of multiple and heterogeneous resources. However, forest cover layers might deviate considerably for a given landscape, potentially affecting evaluations of animals’ habitat use. We assessed inconsistency in the estimates of diel forest use by red and roe deer at GPS location and home range (HR) levels, using two geographic layers: Tree Cover Density (TCD) and Corine Land Cover (CLC). We first measured the classification mismatch of red and roe deer GPS locations between TCD and CLC, also with respect to habitat units’ size. Then, we used generalized Least Squares models to assess the proportional use of forest at day and night at the GPS location and HR levels, both with TCD and CLC. About 20% of the GPS locations were inconsistently classified as forest or open habitat by the two layers, particularly within smaller habitat units. Overall proportion of forest and open habitat, though, was very similar for both layers. In all populations, both deer species used forest more at day than at night and this pattern was more evident with TCD than with CLC. However, at the HR level, forest use estimates were only marginally different between the two layers. When estimating animal habitat use, geographic layer choice requires careful evaluation with respect to ecological questions and target species. Habitat use analyses based on GPS locations are more sensitive to layer choice than those based on home ranges.publishedVersio

    Performance analysis of III-V/SOI microdisk based all-optical gate for on-chip interconnects

    Get PDF
    All-optical devices such as optical filters, (de)multiplexers, switches, modulators and optical buffers etc. have been demonstrated either on silicon or hybrid silicon platform. Power consumption, speed of operation, bandwidth and footprint etc. are important performance metrics for on-chip interconnects. Here we present the experimental and theoretical analysis of the performance of an all-optical gate, realized on III- V/SQl platform, for its applications in on-chip photonic interconnects

    Learning valued relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are in many real-world applications often expressed in a graded manner. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and valued relations are considered, and it unifies existing approaches because different types of valued relations can be modeled, including symmetric and reciprocal relations. This framework establishes in this way important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated on a case study in document retrieval

    Heterogeneously integrated microdisk lasers for optical interconnects and optical logic

    Get PDF
    Optical interconnect and optical packet switching systems could take advantage of small footprint, low power lasers and optical logic elements. Microdisk lasers, with a diameter below 10 mu m and fabricated in InP membranes with a high index contrast, offer this possibility at the telecom wavelengths. The lasers are fabricated using heterogeneous integration of InP membranes on silicon-on-insulator (SOI) passive waveguide circuits, which allows to combine the active elements with compact, high-index contrast passive elements. The lasing mode in such microdisk lasers is a whispering gallery mode, which can be either in the clockwise (CW) or counter clockwise direction (CCW) or in both. The coupling to the SOI wire waveguides is through evanescent coupling. Predefined, unidirectional operation can be achieved by terminating the SOI wires at one end with Bragg gratings. For all-optical flip-flops, the laser operation must be switchable between CW and CCW, using short optical pulses. Unidirectional operation in either direction is only possible if the coupling between CW and CCW direction is very small, requiring small sidewall surface roughness, and if the gain suppression is sufficiently large, requiring large internal power levels. All-optical flip-flops based on microdisk lasers with diameter of 7.5 mu m have been demonstrated. They operate with a CW power consumption of a few mW and switch in 60ps with switching energies as low as 1.8fJ. Operation as all-optical gate has also been demonstrated. The surface roughness is limited through optimized etching of the disks and the large internal power is obtained through good heat sink
    • …
    corecore