15 research outputs found

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Gonadotropin Levels in Hypothyroid Women of Reproductive Age Group

    No full text

    Is the infertility in hypothyroidism mainly due to ovarian or pituitary functional changes?

    No full text
    The objective of the present study was to examine whether hypothyroidism affects the reproductive system of adult female rats by evaluating ovarian morphology, uterus weight and the changes in serum and pituitary concentrations of prolactin and gonadotropins. Three-month-old female rats were divided into three groups: control (N = 10), hypothyroid (N = 10), treated with 0.05% 6-propyl-2-thiouracil (PTU) in drinking water for 60 days, and T4-treated group (N = 10), receiving daily sc injections of L-thyroxine (0.8 µg/100 g body weight) during the last 10 days of the experiment. At the end of 50 days of hypothyroidism no hypothyroid animal showed a regular cycle, while 71% of controls as well as the T4-treated rats showed regular cycles. Corpora lutea, growing follicles and mature Graafian follicles were found in all ovaries studied. The corpora lutea were smaller in both the hypothyroid and T4-replaced rats. Graafian follicles were found in 72% of controls and only in 34% of hypothyroid and 43% of T4-treated animals. Serum LH, FSH, progesterone and estradiol concentrations did not differ among the three groups. Serum prolactin concentration and the pituitary content of the three hormones studied were higher in the hypothyroid animals compared to control. T4 treatment restored serum prolactin concentration to the level found in controls, but only partially normalized the pituitary content of gonadotropins and prolactin. In conclusion, the morphological changes caused by hypothyroidism can be a consequence of higher prolactin production that can block the secretion and action of gonadotropins, being the main cause of the changes observed

    Is the infertility in hypothyroidism mainly due to ovarian or pituitary functional changes?

    No full text
    The objective of the present study was to examine whether hypothyroidism affects the reproductive system of adult female rats by evaluating ovarian morphology, uterus weight and the changes in serum and pituitary concentrations of prolactin and gonadotropins. Three-month-old female rats were divided into three groups: control (N = 10), hypothyroid (N = 10), treated with 0.05% 6-propyl-2-thiouracil (PTU) in drinking water for 60 days, and T4-treated group (N = 10), receiving daily sc injections of L-thyroxine (0.8 µg/100 g body weight) during the last 10 days of the experiment. At the end of 50 days of hypothyroidism no hypothyroid animal showed a regular cycle, while 71% of controls as well as the T4-treated rats showed regular cycles. Corpora lutea, growing follicles and mature Graafian follicles were found in all ovaries studied. The corpora lutea were smaller in both the hypothyroid and T4-replaced rats. Graafian follicles were found in 72% of controls and only in 34% of hypothyroid and 43% of T4-treated animals. Serum LH, FSH, progesterone and estradiol concentrations did not differ among the three groups. Serum prolactin concentration and the pituitary content of the three hormones studied were higher in the hypothyroid animals compared to control. T4 treatment restored serum prolactin concentration to the level found in controls, but only partially normalized the pituitary content of gonadotropins and prolactin. In conclusion, the morphological changes caused by hypothyroidism can be a consequence of higher prolactin production that can block the secretion and action of gonadotropins, being the main cause of the changes observed

    Nanotechnology in ligature-induced periodontitis: protective effect of a doxycycline gel with nanoparticules

    No full text
    OBJECTIVES: The aim of this study was to test the efficacy of a locally applied 8.5% nanostructured doxycycline (DOX) gel in preventing alveolar bone loss in experimental periodontal disease (EPD) in rats by using the tapping mode atomic force microscopy (AFM). MATERIAL AND METHODS: EPD was induced in 24 Wistar rats. Animals were treated with the doxycycline gel topically, immediately after EPD induction, and 3 times a day during 11 days. Four groups (n=6) were formed as follows: Naïve group (animals not subjected to EPD nor treated); non-treated (NT) group (animals subjected to EPD, but not treated); vehicle gel (VG) group (animals subjected to EPD and treated with topical gel vehicle); and DOX group (test group): animals subjected to EPD and treated with the 8.5% DOX gel. In order to investigate topographical changes in histological sections, a novel simple method was used for sample preparation, by etching sections from paraffin-embedded specimens with xylol. RESULTS: Comparing the AFM images, several grooves were observed on the surface of the alveolar bone and other periodontal structures in the NT and VG groups, with significantly greater depths when compared to the DOX group (p<0.05). CONCLUSIONS: Periodontal structures were brought into high relief confirming to be a simple and cost-effective method for AFM imaging with ultrastructural resolution. The doxycycline gel was able to afford periodontal surface preservation, with flatter grooves
    corecore