69 research outputs found

    The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution

    Get PDF
    The previous oldest known fossil snakes date from ∌100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ∌70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.Fil: Caldwell, Michael Wayne. University of Alberta; CanadĂĄFil: Nydam, Randall L.. Department Of Anatomy, Midwestern University, Glendale; Estados UnidosFil: Palci, Alessandro. South Australian Museum. Earth Sciences Section; AustraliaFil: ApesteguĂ­a, SebastiĂĄn. FundaciĂłn de Historia Natural FĂ©lix de Azara; Argentina. Universidad MaimĂłnides. Área de Investigaciones BiomĂ©dicas y BiotecnolĂłgicas. Centro de Estudios BiomĂ©dicos, BiotecnolĂłgicos, Ambientales y de DiagnĂłstico; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Mesoscopic structure conditions the emergence of cooperation on social networks

    Get PDF
    We study the evolutionary Prisoner's Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding perfect agreement with the observations in the real networks. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.Comment: Largely improved version, includes an artificial network model that fully confirms the explanation of the results in terms of inter- and intra-community structur

    A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians

    Get PDF
    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought

    Osteology and phylogenetic relationships of Tehuelchesaurus benitezii (Dinosauria, Sauropoda) from the Upper Jurassic of Patagonia

    Get PDF
    The diversification and early evolution of neosauropod dinosaurs is mainly recorded from the Upper Jurassic of North America, Europe, and Africa. Our understanding of this evolutionary stage is far from complete, especially in the Southern Hemisphere. A partial skeleton of a large sauropod from the Upper Jurassic Cañadón Calcåreo Formation of Patagonia was originally described as a 'cetiosaurid' under the name Tehuelchesaurus benitezii. The specimen is here redescribed in detail and the evidence presented indicates that this taxon is indeed a neosauropod, thus representing one of the oldest records of this clade in South America. A complete preparation of the type specimen and detailed analysis of its osteology revealed a great number of features of phylogenetic significance, such as fully opisthocoelous dorsal vertebrae, the persistence of true pleurocoels up to the first sacral vertebra, associated with large camerae in the centrum and supraneural camerae, and an elaborate neural arch lamination, including two apomorphic laminae in the infradiapophyseal fossa. The phylogenetic relationships of this taxon are tested through an extensive cladistic analysis that recovers Tehuelchesaurus as a non-titanosauriform camarasauromorph, deeply nested within Neosauropoda. Camarasauromorph sauropods were widely distributed in the Late Jurassic, indicating a rapid evolution and diversification of the group. © 2011 The Linnean Society of London.Fil: Carballido, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Rauhut, Oliver Walter Mischa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; Argentina. Ludwig-Maximilians-University; AlemaniaFil: Pol, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Salgado, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record

    Get PDF
    Fil: García, Rodolfo A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Salgado, Leonardo. Instituto de Investigación en Paleobiología y Geología. General Roca. Río Negro; ArgentinaFil: Fernåndez, Mariela. Inibioma-Centro Regional Universitario Bariloche. Bariloche. Río Negro; ArgentinaFil: Cerda, Ignacio A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Carabajal, Ariana Paulina. Museo Carmen Funes. Plaza Huincul. Neuquén; ArgentinaFil: Otero, Alejandro. Museo de La Plata. Universidad Nacional de La Plata; ArgentinaFil: Coria, Rodolfo A.. Instituto de Paleobiología y Geología. Universidad Nacional de Río Negro. Neuquén; ArgentinaFil: Fiorelli, Lucas E.. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica. Anillaco. La Rioja; Argentin

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) Žtongue-likeŽ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with Žstrut-likeŽ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a Žghost lineageŽ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido
    • 

    corecore