9 research outputs found

    THE TRANSIENT HIGH-ENERGY SKY AND EARLY UNIVERSE SURVEYOR

    Full text link
    The Transient High-Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept developed in the last years by a large European consortium and currently under study by the European Space Agency (ESA) as one of the three candidates for next M5 mission (launch in 2032). THESEUS aims at exploiting high-redshift GRBs for getting unique clues to the early Universe and, being an unprecedentedly powerful machine for the detection, accurate location (down to ∌arcsec) and redshift determination of all types of GRBs (long, short, high-z, under-luminous, ultra-long) and many other classes of transient sources and phenomena, at providing a substantial contribution to multi-messenger time-domain astrophysics. Under these respects, THESEUS will show a strong synergy with the large observing facilities of the future, like E-ELT, TMT, SKA, CTA, ATHENA, in the electromagnetic domain, as well as with next-generation gravitational-waves and neutrino detectors, thus greatly enhancing their scientific return

    ESA THESEUS and cataclysmic variables

    No full text
    The capabilities of the considered space mission THESEUS for investigation of cataclysmic variables (CVs) are discussed.Transient High-Energy Sky and Early Universe Surveyor (THESEUS) is a space mission proposal accepted by the European Space Agency for a phase A study that would study gamma-ray bursts and X-rays for investigating the early universe and for the multimessenger astrophysics. It involves a Lobster-Eye X-ray telescope as well. The THESEUS and SMILE international consortia involve the Czech Technical University in Prague and the Czech teams are expected to contribute to the project, mainly to the X-ray telescope and related science and software

    GRB 201015A and the nature of low-luminosity soft gamma-ray bursts

    No full text
    GRB 201015A is a peculiarly low luminosity, spectrally soft gamma-ray burst (GRB), with T90 = 9.8 ± 3.5 s (time interval of detection of 90  per cent of photons from the GRB), and an associated supernova (likely to be type Ic or Ic-BL). GRB 201015A has an isotropic energy EÎł,iso =1.75+0.60−0.53×1050  erg, and photon index Γ=3.00+0.50−0.42  (15–150 keV). It follows the Amati relation, a correlation between EÎł,iso  and spectral peak energy Ep followed by long GRBs. It appears exceptionally soft based on Γ, the hardness ratio of HR  = 0.47 ± 0.24, and low-Ep, so we have compared it to other GRBs sharing these properties. These events can be explained by shock breakout, poorly collimated jets, and off-axis viewing. Follow-up observations of the afterglow taken in the X-ray, optical, and radio reveal a surprisingly late flattening in the X-ray from t = (2.61 ± 1.27) × 104 s to t=1.67+1.14−0.65×106  s. We fit the data to closure relations describing the synchrotron emission, finding the electron spectral index to be p=2.42+0.44−0.30  and evidence of late-time energy injection with coefficient q=0.24+0.24−0.18 ⁠. The jet half opening angle lower limit (Ξj ≄ 16°) is inferred from the non-detection of a jet break. The launch of SVOM and Einstein Probe in 2023 should enable detection of more low-luminosity events like this, providing a fuller picture of the variety of GRBs.</p

    Synergies of THESEUS with the large facilities of the '30s and GO opportunities

    No full text
    The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky. It will specifically exploit large samples of gamma-ray bursts to probe the early universe back to the first generation of stars, and to advance multimessenger astrophysics by detecting and localizing the counterparts of gravitational waves and cosmic neutrino sources. The combination and coordination of these activities with multi-wavelength, multi-messenger facilities expected to be operating in the 2030s will open new avenues of exploration in many areas of astrophysics, cosmology and fundamental physics, thus adding considerable strength to the overall scientific impact of THESEUS and these facilities.We discuss here a number of these powerful synergies and guest observer opportunities.</p

    Time domain astronomy with the THESEUS satellite

    Get PDF
    THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simultaneous multiwavelegth studies. Here we present the THESEUS capabilities for studying the time variability of different classes of sources in parallel to, and without affecting, the gamma-ray bursts hunt

    Unveiling the enigma of ATLAS17aeu

    Full text link
    Aims. The unusual transient ATLAS17aeu was serendipitously detected within the sky localisation of the gravitational wave trigger GW 170104. The importance of a possible association with gravitational waves coming from a binary black hole merger led to an extensive follow-up campaign, with the aim of assessing a possible connection with GW 170104. Methods. With several telescopes, we carried out both photometric and spectroscopic observations of ATLAS17aeu, for several epochs, between ∌3 and ∌230 days after the first detection. Results. We studied in detail the temporal and spectroscopic properties of ATLAS17aeu and its host galaxy. Although at low significance and not conclusive, we found similarities to the spectral features of a broad-line supernova superposed onto an otherwise typical long-GRB afterglow. Based on analysis of the optical light curve, spectrum, and host galaxy spectral energy distribution, we conclude that the redshift of the source is probably z ' 0.5 ± 0.2. Conclusions. While the redshift range we have determined is marginally compatible with that of the gravitational wave event, the presence of a supernova component and the consistency of this transient with the Ep–Eiso correlation support the conclusion that ATLAS17aeu was associated with the long gamma-ray burst GRB 170105A. This rules out the association of the GRB 170105A/ATLAS17aeu transient with the gravitational wave event GW 170104, which was due to a binary black hole merger

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Full text link
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for Îł astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of Îł cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of Îł absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect Îł halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from Îł astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of Îł cosmology

    Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

    Full text link
    The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3 PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy Îł-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte-Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a Îł-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 h of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with O(100) hours of exposure per source.</p

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    No full text
    We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies
    corecore