1,105 research outputs found
One-dimensional tight-binding models with correlated diagonal and off-diagonal disorder
We study localization properties of electronic states in one-dimensional
lattices with nearest-neighbour interaction. Both the site energies and the
hopping amplitudes are supposed to be of arbitrary form. A few cases are
considered in details. We discuss first the case in which both the diagonal
potential and the fluctuating part of the hopping amplitudes are small. In this
case we derive a general analytical expression for the localization length,
which depends on the pair correlators of the diagonal and off-diagonal matrix
elements. The second case we investigate is that of strong uncorrelated
disorder, for which approximate analytical estimates are given and compared
with numerical data. Finally, we study the model with short-range correlations
which constitutes an extension with off-diagonal disorder of the random dimer
model.Comment: 11 pages, 7 EPS figures; submitted to "Physica E
Ab-initio electron transport calculations of carbon based string structures
First-principles calculations show that monatomic strings of carbon have high
cohesive energy and axial strength, and exhibit stability even at high
temperatures. Due to their flexibility and reactivity, carbon chains are
suitable for structural and chemical functionalizations; they form also stable
ring, helix, grid and network structures. Analysis of electronic conductance of
various infinite, finite and doped string structures reveal fundamental and
technologically interesting features. Changes in doping and geometry give rise
to dramatic variations in conductance. In even-numbered linear chains strain
induces substantial decrease of conductance. The double covalent bonding of
carbon atoms underlies their unusual chemical, mechanical and transport
properties.Comment: 4 pages, 4 figure
Defect free global minima in Thomson's problem of charges on a sphere
Given unit points charges on the surface of a unit conducting sphere,
what configuration of charges minimizes the Coulombic energy ? Due to an exponential rise in good local minima, finding global
minima for this problem, or even approaches to do so has proven extremely
difficult. For \hbox{} recent theoretical work based on
elasticity theory, and subsequent numerical work has shown, that for --1000 adding dislocation defects to a symmetric icosadeltahedral lattice
lowers the energy. Here we show that in fact this approach holds for all ,
and we give a complete or near complete catalogue of defect free global minima.Comment: Revisions in Tables and Reference
Recommended from our members
Depth spreading through empty space induced by sparse disparity cues
A key goal of visual processing is to develop an understanding of the three-dimensional layout of the objects in our immediate vicinity from the variety of incomplete and noisy depth cues available to the eyes. Binocular disparity is one of the dominant depth cues, but it is often sparse, being definable only at the edges of uniform surface regions, and visually resolvable only where the edges have a horizontal disparity component. To understand the full 3D structure of visual objects, our visual system has to perform substantial surface interpolation across unstructured visual space. This interpolation process was studied in an eight-spoke depth spreading configuration corresponding to that used in the neon color spreading effect, which generates a strong percept of a sharp contour extending through empty space from the disparity edges within the spokes. Four hypotheses were developed for the form of the depth surface induced by disparity in the spokes defining an incomplete disk in depth: low-level local (isotropic) depth propagation, mid-level linear (anisotropic) depth-contour interpolation or extrapolation, and high-level (anisotropic) figural depth propagation of a disk figure in depth. Data for both perceived depth and position of the perceived contour clearly rejected the first three hypotheses and were consistent with the high-level figural hypothesis in both uniform disparity and slanted disk configurations. We conclude that depth spreading through empty visual space is an accurately quantifiable perceptual process that propagates depth contours anisotropically along their length and is governed by high-level figural properties of 3D object structure
Dual-Frequency VSOP Observations of AO 0235+164
AO 0235+164 is a very compact, flat spectrum radio source identified as a BL
Lac object at a redshift of z=0.94. It is one of the most violently variable
extragalactic objects at both optical and radio wavelengths. The radio
structure of the source revealed by various ground-based VLBI observations is
dominated by a nearly unresolved compact component at almost all available
frequencies.
Dual-frequency space VLBI observations of AO 0235+164 were made with the VSOP
mission in January-February 1999. The array of the Japanese HALCA satellite and
co-observing ground radio telescopes in Australia, Japan, China and South
Africa allowed us to study AO 0235+164 with an unprecedented angular resolution
at frequencies of 1.6 and 5 GHz. We report on the sub-milliarcsecond structural
properties of the source. The 5-GHz observations led to an estimate of T_B >
5.8 x 10^{13} K for the rest-frame brightness temperature of the core, which is
the highest value measured with VSOP to date.Comment: 8 pages, 8 figures, to appear in Publ. Astron. Soc. Japa
Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs
We present nuclear spin relaxation measurements in GaAs epilayers using a new
pump-probe technique in all-electrical, lateral spin-valve devices. The
measured T1 times agree very well with NMR data available for T > 1 K. However,
the nuclear spin relaxation rate clearly deviates from the well-established
Korringa law expected in metallic samples and follows a sub-linear temperature
dependence 1/T1 ~ T^0.6 for 0.1 K < T < 10 K. Further, we investigate nuclear
spin inhomogeneities.Comment: 5 pages, 4 (color) figures. arXiv admin note: text overlap with
arXiv:1109.633
A Compact Extreme Scattering Event Cloud Towards AO 0235+164
We present observations of a rare, rapid, high amplitude Extreme Scattering
Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is
compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance
of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a
minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and
timescale of the ESE observed here, we suggest that at least one of the
transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure
Magnetoresistance of composite fermions at \nu=1/2
We have studied temperature dependence of both diagonal and Hall resistivity
in the vicinity of . Magnetoresistance was found to be positive and
almost independent of temperature: temperature enters resistivity as a
logarithmic correction. At the same time, no measurable corrections to the Hall
resistivity has been found. Neither of these results can be explained within
the mean-field theory of composite fermions by an analogy with conventional
low-field interaction theory. There is an indication that interactions of
composite fermions with fluctuations of the gauge field may reconcile the
theory and experiment.Comment: 9 pages, 4 figure
Influence of major mergers on the radio emission of elliptical galaxies
We investigate the influence of major mergers on the radio emission of
elliptical galaxies. We use a complete sample of close pairs, which contains
475 merging and 1828 non-merging paired elliptical galaxies of M_r<-21.5
selected from the Sloan Digital Sky Survey. In addition, a control sample of
2000 isolated field galaxies is used for comparison. We cross-identify the
optical galaxies with the radio surveys of FIRST and NVSS. We find that the
radio fraction of merging paired galaxies is about 6%, which is slightly higher
than the 5% obtained for non-merging paired galaxies, although these values are
consistent with each other owing to the large uncertainty caused by the limited
sample. The radio fraction is twice as that of isolated galaxies, which is less
than 3%. Radio emission of elliptical galaxies is only slightly affected by
major mergers, but predominantly depends on their optical luminosities.
Therefore, merging is not important in triggering the radio emission of
elliptical galaxies.Comment: 5 pages, 5 figures, 1 table, accepted for publication in A&A, minor
change
- …
