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Abstract 

A key goal of visual processing is to develop an understanding of the three-dimensional layout of 

the objects in our immediate vicinity from the variety of incomplete and noisy depth cues 

available to the eyes.  Binocular disparity is one of the dominant depth cues, but it is often sparse, 

being definable only at the edges of uniform surface regions, and visually resolvable only where 

the edges have a horizontal disparity component. In order to understand the full 3D structure of 

visual objects, our visual system has to perform substantial surface interpolation across 

unstructured visual space. This interpolation process was studied in an eight-spoke depth 

spreading configuration corresponding to that used in the Neon Color Spreading Effect. A strong 

percept of a sharp contour extending through empty space from the disparity edges within the 

spokes was perceived by all observers. Four hypotheses were developed for the form of the depth 

surface that would be induced by disparity in the spokes defining an incomplete disk in depth: 

low-level local (isotropic) depth propagation, mid-level linear (anisotropic) depth-contour 

interpolation or extrapolation, and high-level (anisotropic) figural depth propagation of a disk 

figure in depth.  Data for both perceived depth and position of the perceived contour clearly 

rejected the first three hypotheses and were consistent with the high-level figural hypothesis for 

the anisotropic depth propagation in both uniform disparity and slanted disk configurations. We 

conclude that depth spreading through empty visual space is an accurately quantifiable 

perceptual process that propagates depth contours anisotropically along their length and is 

governed by high-level figural properties of 3D object structure. 
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Introduction 

The primary goal of visual encoding is to determine the nature and motion of the objects in the 

surrounding environment. In order to plan and coordinate actions, we need a functional 

representation of the three-dimensional (3D) scene layout and of the spatial and depth 

configuration of the objects within it. The visual information provided to each eye is, however, 

two-dimensional (2D), and the 2D configurations of objects in the visual array have an entirely 

different metric structure from that of the spatial configuration of the visual cues that convey the 

presence of objects to the brain, or to artificial sensing systems that share none of the physical 

properties constituting the objects. In general, the visual cues may change in luminance or color, 

or they may be disrupted by reflections or occlusion by intervening objects. The particular cues 

such as edge structure, binocular disparity, color, shading, texture, and motion vector fields may 

carry discordant information about different aspects of an object. Importantly, many of these 

cues may be sparse, with missing information about the object structure across occlusions or 

gaps where there are no edge or texture cues to carry information about the object shape.   

Thus, a primary requirement of neural or computational representations of the shape of 

objects is the reconstruction of the 3D configuration and filling-in of its depth surfaces across 

regions of missing or discrepant information in the local visual cues. Computational approaches 

to the issue of the structure of objects tend to take either low-level or high-level approaches to 

the problem. Low-level approaches begin with local feature recognition and attempt to build up 

the object representation by hierarchical convergence, using primarily feedforward logic with 

some recurrent feedback tuning of the results (e.g., Marr, 1982; Grossberg, Kuhlman & 

Mingolla, 2007). High-level, or Bayesian, approaches begin with the vocabulary of likely object 

structures and look for evidence in the visual array as to which object might be there (e.g., Huang 

& Russell, 1998; Rue & Hurn, 1999; Moghaddam, 2001; Stormont, 2007). Both approaches 

work well for objects with a stable 2D structure (as in a typical laboratory set-up), but are easily 

confused when viewing a complex 3D scene (such as a hardware store). It is therefore of critical 

importance in full-fledged visual representation to provide a completed reconstruction of the 3D 

structure of the objects in the visual world. 
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Surfaces as a Mid-Level Invariant in Visual Encoding 

Rather than relying on the object templates typical of cognitive investigations, a more 

fruitful approach to the issue of 3D object structure is to focus the analysis on mid-level 

invariants to the object structure, such as surfaces, symmetry, rigidity, texture invariants or 

surface reflectance properties. Each of these cues is invariant under transformations of 3D pose, 

viewpoint, illumination level, haze contrast, and other variations of environmental conditions. 

Various computational analyses have incorporated such invariants in their object-recognition 

schemes, but a neglected aspect of mid-level vision is the 3D surface structure that is an 

inescapable property of objects in the world.  

Surfaces are a key property of our interaction with objects in the world.  It is very unusual 

to experience objects, either tactilely or visually, except through their surfaces.  Even transparent 

objects are experienced through their surfaces, with the material between the surfaces being 

invisible by virtue of the transparency. Only translucent objects are experienced in an interior 

manner, as the light passes through them to illuminate the density of the material. Developing a 

means of representing the proliferation of surfaces before us is, therefore, a key stage in the 

processing of objects. 

The various 3D surface cues such as luminance shading, linear perspective, aspect ratio 

of square objects, and texture gradient can each specify the slant of a planar surface. Zimmerman, 

Legge & Cavanagh (1995), for example, performed experiments to measure the accuracy of 

surface slant from judgments of the relative lengths of a pair of orthogonal lines embedded in 

one surface of a full visual scene. Slant judgments were accurate to within 3 deg for all three cue 

types, with no evidence of the recession to the frontal plane expected if the pictorial surface was 

contaminating the estimations. Depth estimates of disconnected surfaces were, however, strongly 

compressed. Such results emphasize the key role of 3D surface reconstruction in human depth 

estimation. . 

Surface Representation through the Attentional Shroud 

A more vivid representation of the depth reconstruction process is to envisage it as an 

‘attentional shroud’ (Tyler & Kontsevich, 1995; Tyler, 2005; Huang et al., 2012), wrapping the 

dense locus of activated disparity detectors as a cloth wraps a structured object. The concept of 

the attentional shroud can also be the thought of as a mechanism that acts like a soap film in 

minimizing the curvature of the perceived depth surface consistent with the available disparity 
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information.  To probe the nature of object processing by different cues, we may measure the 

localization of objects defined by multiple visual modalities (such as luminance and disparity). 

Likova & Tyler (2003) addressed the unitary depth map hypothesis of object localization 

by using a sparsely sampled image of a Gaussian bulge. The sparse sampling dramatically 

degraded localization accuracy based on luminance cues, but caused no degradation when based 

on binocular disparity cues. This dramatic difference suggests that depth surface reconstruction 

is the key process in the accuracy of the localization process. Furthermore, when depth was 

nulled by opposing the luminance and disparity cues, localizing the ‘object’ (the Gaussian bulge) 

became impossible. Only an interpolation mechanism operating at the level of generic depth 

representation can account for the data. Evidently, the full specification of objects in general 

requires extensive interpolation to take place.  The dominance of a depth representation in the 

performance of such tasks indicates that the depth information is not just an overlay to the 2D 

sketch of the positional information.  Instead, a full 3D depth reconstruction of the surfaces in the 

scene must be completed by the human visual system before the position of the object is known. 

 

 
 

Figure 1. The Neon Color Spreading Effect shown at several different scales. This configuration is derived from one 

developed by Bach (2002) (http://www.michaelbach.de/ot/col_neon/index.html). 
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Rationale 

To address the question of depth reconstruction in the sparse cue situation, we designed a depth 

image that is a 3D version of the neon color spreading effect (Figure 1), in which the empty 

wedge regions between the spokes appear to take on a fainter version of the color of the central 

segments of the spokes (Varin, 1971; van Tuijl, 1975; Bressan et al., 2003). It is generally 

understood that the colored region has the form of a circular disk (e.g., Gove et al., 2005), 

although the sharpness of the edges does not appear to have been quantified and our close 

observation suggests that the edge region is not well defined and cannot be definitely specified as 

having the sharp edge of a uniform disk.  

 

 

Figure 2.  The Depth Spreading Effect, a stereoscopic depth version of the Neon Color Spreading Effect. Free 

fusion across a pair of these images will reveal a pair of stereoscopic images, one with near and the other with far 

disparity in the central region of spokes, which appears to complete across the white spaces to form a raised or 

recessed disk. 

 

The 3D version of the illusion is depicted in Figure 2, in which the color difference in the central 

region of the spokes is replaced by a binocular disparity difference, generating the impression 

that this region is recessed in depth. In order to provide equal disparity cues for all spoke angles, 

the spokes are made of a random-dot texture rather than a uniform black. Note that the white 

wedges between the spokes appear to have the same depth as the spokes, even though they carry 

no binocular disparity information per se. In this sense, the visual system is able to use the 

disparity information in the spoke regions to fill in the perceived depth in the inter-spoke regions. 

It is noteworthy that the inter-spoke depth appears continuous with the depth of the spokes, 
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implying a 100% strength of the depth filling-in effect, in contrast to the much weaker filling-in 

of the neon color spreading effect. 

Depth spreading through empty space was reported by Julesz (1971, Figure 7.7.1), in the 

form of a white stripe through his classic random-dot stereogram of a depth square. He described 

the perceived depth as forming a “crisp contour”, and showed that a more complex type of 

interpolation in the form of a white stripe through a random-dot stereogram of a diamond shape 

Julesz (1971, Figure 7.7.2) did not give a clear interpolated border. He did not, however, 

quantify the sharpness of the border, and did not assess the form of a curved border interpolation. 

Gove et al. (2005) implemented a computational model of the neon color spreading through the 

LAMINART model of cortical interactions (Grossberg, 1999) that generated a linear contour 

interpolation. Presumably a more elaborated process would be needed to generate a fully circular 

completion boundary, either one that was anisotropic, with extended smoothing along the 

contour while allowing propagation of the sharp boundary across the contour, or one that 

incorporates relaxation to simple higher-order figures such as circles. 

These possibilities for the process involved in the completion of the disk, in either the 

color or depth version of the filling-in, can be formalized into the four hypotheses depicted in 

Figure 3: 

1. Low-level local depth propagation: local diffusion hypothesis that the filling-in fades 

gradually towards the edge in a form predicted by a local 2D diffusion function to form 

depth gradients in the wedge regions (Figure 3B). (Details of the 2D diffusion hypothesis 

are provided in Methods.) 

2. Mid-level depth-contour propagation: A. Linear depth-contour extrapolation hypothesis 

that the filling-in propagates the sharp-edged character of the defined disparity terminator 

edges linearly across the undefined region, such that the shape of the filled-in region 

extends along the orientation of the terminators to take an octagonal form (Figure 3C, 

green contour). B. Linear depth-contour interpolation hypothesis that the filling-in 

propagates the sharp-edged character of the defined disparity terminations linearly across 

the undefined region, such that the shape of the filled in region takes a truncated 

octagonal form (Figure 3C, black boundary).  

3. High-level figural depth propagation: Figural depth-contour interpolation hypothesis that 

the filled in area conforms to the disciform figure of a circular disk with a sharp edge, 
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filled in uniformly up to the edge and falling immediately to the surround level beyond 

the edge (Figure 3D).  

!A:!S%mulus!disparity !B:!Local!2D!diffusion !C:!Linear!propaga%on !D:!Disciform!propaga%on!
 

Figure 3. Depiction of three forms of depth surface interpolation. A: stimulus disparity arrangement (black to white: far to near 

disparities, green: undefined).  B: depth interpolation by diffusion from the spokes, forming depth gradients in the wedge regions. 

(Black to white: far to near perceived depth, dashed lines: region of defined disparity). C: Two forms of depth propagation with 

straight contours in forming a sharp-edged octagon between the spokes. The green outline depicts linear extrapolation of the 

depth contours in the spokes; the cyan outline around the black octagon indicates linear interpolation between the endpoints of 

the depth contours D: depth propagation along curved contours in the form of a sharp-edged disk. 

 

This study is designed to measure the form of the depth profile in the interpolation region in 

order to gain insight into the neural mechanisms involved in the interpolation process. 

 

Methods 

Subjects and Experimental Setup 

Four naïve subjects, all with normal or corrected-to-normal vision and able to free-fuse the 

adjacent pair of (non-anaglyphic) binocular stimuli comfortably, each performed binocular 

observations at a viewing distance of 86 cm of the stereoscopic patterns presented on a pixelated 

computer screen with a horizontal resolution of 1024 pixels. The study was approved by the 

UMDNJ IRB, and all subjects gave written informed consent. 

Stimuli 

Each stimulus in any given binocular pair had eight disconnected, equidistant radial inducing 

bars composed of a non-overlapping random dot pattern at zero disparity, serving as the “outer 

spokes” (Figure 2).  Eight equidistant radial “inner spokes,” joined at the center, were of equal 
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length and composition, with a disparity offset from that of the outer spokes. In the frontoparallel 

set, these inner spokes were given a uniform disparity of -23 arcmin when viewed binocularly, 

with the random dots forming a continuous pattern through the region of the disparity edges 

within the spokes. In the horizontally slanted configuration, the spokes were arranged to lie in a 

slanted plane with the left edge at a disparity of -28 arcmin and the right edge at a disparity of 

+11 arcmin when viewed binocularly. To control for any interference from the monocular 

vernier-type shifts present in the uniform disparity condition (Figure 2), the slanted condition 

also included a gap between the inner and outer spokes (Figure 4B). 

 

!!1 

P(x) 
P(x) 

 

               A                   B 

Figure 4. A. Diagram of non-slanted test image with red triangles indicating tested locations and blue, green, and red lines 

delineating, respectively, the perceived depth boundaries predicted by the linear interpolation, linear extrapolation, and disciform 

hypotheses. B. Diagram of the slanted test image with red triangles indicating tested locations. The white gap was included to 

control for the Vernier shifts of the inducing spokes in each eye’s image.  
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Figure 5. A. Example of the non-slanted stimulus configuration that subjects were asked to free-fuse to test the sharpness of the 

depth boundaries. Blue test dots are set at the upper radial position just outside the circular boundary of the inner disc, the red 

fiducial line is aligned with the blue dots in the right eye, and the cyan line in the left eye, to form a Nonius pair. B. Example of 

the slanted stimulus configuration, with the blue test dot and Nonius lines set at the lower radial position just outside the circular 

boundary. 

 

Procedures 

The stimuli were displayed in a series of nine pairs of frontal and slanted stimuli at a range of 

disparities to subjects for each radial position tested, to provide 9 steps of 2 arcmin around the 

disparity of the disk (Figure 4). A pair of blue dots (Figure 5) was placed at varying disparities in 

empty space along the imaginary oblique line through the center of the gaps. A red comparison 

line was shifted to align with the blue dot in the right eye’s image. A cyan disparity line was 

aligned with the blue dot in the left eye’s image, so that upon free-fusion, the two lines would 

form a pair of Nonius lines to ensure binocular alignment. For each radial position, subjects 
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stepped the blue dot pair through the 9 available disparity levels in sequence to find a perceived 

depth match, with the capability of going back and forth along the sequence to refine their choice 

when they were close to their perceived match. Both sets of frontoparallel and horizontally 

slanted depth structures were run for each of two experiments to evaluate the perceived depth in 

the intervening white spaces and the sharpness of depth boundaries.  

 

Perceived depth of white space 

Perceived depth of the white space interpolated from the inducing spokes was first quantified to 

test the observation that depth did spread into the empty space of the gaps between spokes. 

Subjects selected the stimulus in which the disparity of the blue dot appeared to lie at a depth that 

matched their perceived depth of that space (Figure 4). This process was repeated for each of 

seven positions along the radial line per set of frontoparallel and horizontally slanted inner disks: 

in the empty space between the outer spokes, depth boundary of the outer spokes, depth 

boundary of the inner spokes, middle of the illusory depth structure, and three corresponding 

positions on the opposite side of the structure (Figure 4).  

Radial position was the distance in pixels from the outer radial boundary of the outer 

spokes to the point of interest. This was measured as viewing angle in arcmin by multiplying the 

angle in radians by  . Disparity was measured in pixels shift, as follows:  

 

Equation 1. Disparity as measured by pixels in arcmin. 

 

Predictions 

Depth interpolations in the empty white space were calculated based on the actual disparity of 

our test points and local depth interpolation hypothesis was implemented using the 

TriScatteredInterp function in MATLAB, while the predictions of the depth-contour propagation 

hypotheses were evaluated geometrically (Figure 6). The disciform (figural depth propagation) 
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hypothesis predicts that a sharp depth contour in the empty white space is at the same radial 

distance as the disparity edge in the spokes (i.e., 0.5).  (Only the disciform hypothesis was 

evaluated for the slanted configuration because the gaps between the inner and outer spokes 

made the others difficult to implement.) Radial distance from the center was specified in arcmin 

(Figure 6C). Depth value outputs with the same range were rescaled to the respective actual 

disparities of the outer boundary of the inner illusory disk and the inner boundary of the outer 

spokes. 
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 A  B   C 

Figure 6. Perceived depth predictions of the four hypotheses. A. Illustration of the disparity configuration of the stimulus of 

Figure 4A, with white and black designating the two disparities and green designating indeterminate white regions. B. Surface 

interpolation in radial distance (θ = π/8) calculated using MATLAB’s TriScatteredInterp function. The red line in B indicates the 

radial position of the depth of the interpolated surface in (C). C. Hypothetical perceived depth functions. The red line in C 

portrays the hypothesis of a sharp border on a curved (disciform) contour at the same radial distance as the disparity edges, in 

contrast to the linear extrapolation of the disparity contours (green line), linear interpolation of the sharp border between the 

disparity contour endpoints (cyan line) and the surface interpolation hypothesis of panel B (dashed line). 

 

Sharpness of depth boundaries 

The sharpness of the depth boundaries delineated by the inner and outer spokes was also 

quantified by determining their radial positions, using a similar setup as in the previous 

experiment. Here, the pair of blue test dots was aligned with the radial position of the circular 

boundary of either the inner spokes or that of the outer spokes. Subjects selected the stimulus in 

which the position of the blue dot matched their perceived edge of the boundary in question. 

They repeated this process four times along the same radial line used to test perceived depth of 
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empty space: once for the circular depth boundary of the outer spokes, once for the boundary of 

the inner spokes, and finally once each at the two corresponding positions on the opposite half of 

the structure. Pixel distances were converted into arcmin for further statistical analysis using the 

same conversion factor as in Equation 1. The distance from the center of the inner spokes to the 

midpoint of any edge of an interpolated octagonal depth boundary was determined as follows, 

where r is the length of any inner spoke and the radius of an interpolated circular boundary: 

   . 

Equation 2. Distance from center of inner spokes to midpoint of the edge of interpolated octagonal depth boundary, with r being 

the radius of interpolated circular boundary. 

 

Thus, the octagonal extrapolation predicts a distance ratio of 1.082 times that of the 

circular interpolation while the octagonal interpolation predicts a distance ratio of 0.924. 

 

 

Results 

The actual depth of the white space adhered closely to the depth interpolated from the disparities 

in the inducing spokes for both the frontoparallel and horizontally slanted disk stimuli, in 

accordance with the observation that perceived depth spreads into empty space (Figure 7; Table 

1). The form of the perceived depth, however, failed to match to the graded surface prediction of 

the local depth propagation hypothesis (Figure 7A). The sharp borders of the linear depth-

contour extrapolation and interpolation hypotheses are also significantly different from the actual 

results for the frontoparallel disk sets (p < 0.05, corrected for multiple applications in Table I, n 

= 4). The predictions of the disciform hypothesis were not significantly different from our results 

for either the frontoparallel or slanted disc configurations (Figure 7 A,B). 
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Figure 7. Graphical representation of the results and predictions for each set of frontoparallel (A) and horizontally slanted (B) 

depth structures.             shows our actual results,           depicts the surface interpolation, and            illustrates the depth 

interpolation; n = 4. 

 

Table IA. Perceived Depth Predictions and Results for the Unslanted Display 

Radial 

position 

Depth predictions 

Actual 

results  
SD 

Linear 

interpolation 

Linear 

extrapolation 

Disciform 

hypothesis 

Local depth 

propagation 

-270 0* 0* 0 0* -2.1 0.5 

-155 0* -23* 0 -5.6* -1.6 2 

-150 0* -23* -23 -7* -22.6 0.7 

0 -23* -23* -23 -23* -22.3 0.5 

150 0* -23* -23 -7* -22.3 0.5 

155 0* -23* 0 -5.6* -0.5 0.8 

270 0* 0* 0 0* -0.5 0.8 

 

Table IB. Perceived Depth Predictions and Results for the Slanted Display 

Radial 

position 

Disciform 

hypothesis 

Actual 

results 
SD 

-270 0 0.5 1.9 

-160 0 -0.5 1.2 

-140 -28 -26.5 1.6 

0 -7 -7.4 0.5 

140 11 11.1 1.9 

160 0 -1.1 1.3 

270 0 -0.5 0.8 
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Table 1. Depth predictions for several hypothetical forms of depth spreading compared with results from naïve subjects (n = 4) 

with standard deviation (SD) at each of 7 radial positions (bolded) for the frontoparallel (A) and horizontally slanted (B) depth 

structures at radial positions designed to discriminate among the hypotheses of Figure 6. All measurements in arcmin of the 

visual angle of subtense. Asterisks in A (*) indicate significant differences (p < 0.05, corrected for multiple applications across 

the tables, n = 4) between observed and predicted depth values for a particular model (see Figure 7A).  Values in B were only 

evaluated for the disciform hypothesis, for which the data showed no significant differences from the predicted depths (see 

Figure 7B). 

 

Sharpness of depth boundaries 

From the data, Gaussian plots depict the mean at the inner depth boundaries to quantify sharpness 

and boundary position relative to the three hypotheses (Figure 7). The data from boundary 

sharpness are consistent with the prediction of a circular and not either of the octagonal depth 

structures. Gaussian distributions of lateral shift data for the frontoparallel set indicate that the 

location of the border is remarkably precise (Figure 7), with σ of the order of 5 arcmin, or only 

about 2% of the radius of the disk. At a criterion of p < 0.05, the disciform hypothesis is the only 

one that is not significantly different from observed values of depth, while being significantly 

different from the two locations predicted by the other two hypotheses (see Figure 7). 

 

 

 

 

 

Figure 8. Results of the position estimation of the perceived border for the frontoparallel disc. Gaussian curve represents the 

mean and standard deviations (σ) of the results. Vertical bars represent the predicted locations of the interpolated (blue), 

extrapolated (green), and circular (red) hypotheses as to the position of the perceived depth border. Asterisks (*) indicate 

predicted values for which the actual depth differed significantly (p < 0.05, n = 4). 

 

Discussion 

Actual 

     µ1 = -149.3, σ = 5.2 

     µ
2
 = 148.6, σ = 5.0 

Predictions 

Linear interpolation: 
     x

1
 = -138.6* 

     x
2
 = 138.6* 

Linear extrapolation: 
     x

1
 = -162.3* 

     x
2
 = 162.3* 

Disciform hypothesis: 
     x

1
 = -150 

     x
2
 = 150 
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This study had two main outcomes.  First is that there is perceptual completion of the disparity 

border specified in the spokes across the empty white space between the spokes, forming a 

perceived depth border as sharp as could be measured by our probe technique. This is an 

anisotropic form of diffusion, in that the border is propagated lengthwise between the spokes 

rather than spreading out isotropically from the points where the disparity information stops.  We 

formalized the isotropic diffusion concept as a local diffusion process of the 3D surface 

information provided by the disparity in the spoke regions, predicting the 2D surface function 

depicted in Figure 3B and graphed as a 1D function through the line halfway between the spokes 

in Figures 4 and 6B. This diffusive form of interpolation is strongly repudiated by the 

quantitative results, which show that the perceived border is much sharper than the isotropic 2D 

diffusion prediction, requiring some form of anisotropic diffusion in which the border 

information is propagated only along a 1D linear extension of its length and not in any other 

directions. 

This raises the issue of the second outcome, which shows what form of line the 1D 

propagation takes. The two forms depicted in Figure 3C are incompatible with the results in 

Figure 7, which shows that the location of the sharp depth border is conforms only to the fourth 

hypothesis of anisotropic curvilinear extrapolation of the disparity edges to form a homogeneous 

flat disk in depth. Whereas the isotropic 2D propagation and the anisotropic 1D propagation 

hypotheses are compatible with local processes, the anisotropic disciform propagation seems to 

be compatible only with a global process that conforms the interpolated depth contours into a 

figural Gestalt with global simplicity. Admittedly, a disk shape is a very familiar form of global 

simplicity, but it is nevertheless one that has to be applied to the perceived depth structure, which 

is itself a higher-order construct relative to the local luminance edges that are considered the 

usual constituents of form processing. The disciform outcome of the interpolation process is 

therefore a substantial challenge to an understanding of the underlying perceptual mechanisms in 

terms of local neural processes. 

Two mechanisms that could be invoked to account for the disciform interpolation of the 

depth contour are Bayesian priors and transformational invariants. Under the transformational 

invariant explanation, potential interpolation options would be examined for simplicity under 

image transformations. One such transformation might be rotation around the line of sight, such 

that when fixated centrally, a disk has self-similarity (simplicity) under rotation. Thus, the 
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roundish recess generated by a proto-interpolation process might be guided toward the form of a 

disk because of its figural simplicity. 

The other possible mechanism is the Bayesian prior, which says that, regardless of figural 

properties, the interpolation is governed by the probability of having encountered recesses of 

various shapes in the past. The highest probability shapes then tend to govern the shape that the 

present recess is perceived to have. It should be noted that the Bayesian hypothesis is entangled 

with the transformational invariance hypothesis in two respects. One is that the recesses 

encountered in the past may themselves be biased toward a rotationally invariant sample because 

many of them may have been made by a rotationally invariant tool such as a drill (or a molding 

derived from such a tool). In this respect, our modern visual systems brought up in a 

‘carpentered’ artificial environment might be very different from those brought up in a primitive 

cave environment, in which accurately disciform recesses would be extremely rare. The other is 

that, conversely, the average probability function for recess shapes would tend toward rotational 

invariance even though the individual examples encountered might not themselves have been 

circular, simply by regression toward the mean. On this argument, the Bayesian prior might tend 

toward simplicity principles in the average even if they were not manifested in individual 

examples.  In general, then, it is likely to be difficult to disentangle the mechanism enforcing the 

simplicity interpretation unless studies are done to specifically distort the near-term Bayesian 

prior and determine its degree of applicability in particular cases. 
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