241 research outputs found

    The Influence of Cultural and Social Capital on Post-Baccalaureate Students’ Decision to Enter and Complete Graduate School

    Get PDF
    Despite increased diversity noted in undergraduate education in recent years (Antonio, 2003), students from non-majority groups continue to be underrepresented in graduate school. Many research studies (Perna, 2000, 2004; Perna & Titus, 2005; Rowan-Kenyon, 2007; Walpole, 2003, 2007b) have used measures of cultural and social capital to increase the explanatory power of the traditional econometric framework in college choice models, but have not used these sociological variables as a primary focus. The purpose of this correlational study was to explore the influence of cultural capital and social capital on the decision of bachelor’s degree completers to enter graduate school and ultimately to degree achievement. The study is an extension of Perna’s 2004 work, which examined similar relationships of cultural and social capital variables via use of the Baccalaureate & Beyond: 93/97 study. Based on Walpole’s findings (2003), variables related to socioeconomic status (SES) were also included in my analysis. The data used to answer the research questions were collected as part of a longitudinal study, the Baccalaureate & Beyond: 93/03. Participants in the Baccalaureate & Beyond: 93/03 study were students in the U.S. who earned a bachelor’s degree during the 1992-1993 academic year, representing a population of 1.2 million individuals (Choy, Bradburn, & Carroll, 2008). My findings revealed that measures of cultural and social capital have a significant influence on graduate school enrollment and degree completion. Among low SES students (as designated by family income) cultural and social capital variables substantially increased the likelihood of graduate degree attainment

    Simulating the impact of the Smith Cloud

    Get PDF
    We investigate the future evolution of the Smith Cloud by performing hydrodynamical simulations of the cloud impact onto the gaseous Milky Way Galactic disk. We assume a local origin for the cloud and thus do not include a dark matter component to stabilize it. Our main focus is the cloud's influence on the local and global star formation rate (SFR) of the Galaxy and whether or not it leads to an observable event in the far future. Our model assumes two extremes for the mass of the Smith Cloud, an upper mass limit of 107^7 M⊙_{\odot} and a lower mass limit of 106^6 M⊙_{\odot}, compared to the observational value of a few 106^6 M⊙_{\odot}. In addition, we also make the conservative assumption that the entirety of the cloud mass of the extended Smith Cloud is concentrated within the tip of the cloud. We find that the impact of the low-mass cloud produces no noticeable change in neither the global SFR nor the local SFR at the cloud impact site within the galactic disk. For the high-mass cloud we find a short-term (roughly 5 Myr) increase of the global SFR of up to 1 M⊙_{\odot} yr−1^{-1}, which nearly doubles the normal Milky Way SFR. This highly localized starburst should be observable.Comment: 14 pages, 5 figure

    Simple derivation of the frequency dependent complex heat capacity

    Full text link
    This paper gives a simple derivation of the well-known expression of the frequency dependent complex heat capacity in modulated temperature experiments. It aims at clarified again that the generalized calorimetric susceptibility is only due to the non-equilibrium behaviour occurring in the vicinity of thermodynamic equilibrium of slow internal degrees of freedom of a sample when the temperature oscillates at a well determined frequency

    On the correlation between hydrogen bonding and melting points in the inositols

    Get PDF
    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006[Simperler, A., Watt, S. W., Bonnet, P. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 589-600.]). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible

    Alterations in regulatory T cells and immune checkpoint molecules in pancreatic cancer patients receiving FOLFIRINOX or gemcitabine plus nab-paclitaxel

    Get PDF
    PURPOSE This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS Peripheral blood mononuclear cells were isolated before and 30~days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. RESULTS Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0~months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0~months (p = 0.011), respectively. CONCLUSIONS Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    The Influence of Dense Gas Rings on the Dynamics of a Stellar Disk in the Galactic Center

    Get PDF
    The Galactic center hosts several hundred early-type stars, about 20% of which lie in the so-called clockwise disk, while the remaining 80% do not belong to any disks. The circumnuclear ring (CNR), a ring of molecular gas that orbits the supermassive black hole (SMBH) with a radius of similar to 1.5 pc, has been claimed to induce precession and Kozai-Lidov oscillations onto the orbits of stars in the innermost parsec. We investigate the perturbations exerted by a gas ring on a nearly Keplerian stellar disk orbiting an SMBH by means of combined direct N-body and smoothed particle hydrodynamics simulations. We simulate the formation of gas rings through the infall and disruption of a molecular gas cloud, adopting different inclinations between the infalling gas cloud and the stellar disk. We find that a CNR-like ring is not efficient in affecting the stellar disk on a timescale of 3 Myr. In contrast, a gas ring in the innermost 0.5 pc induces precession of the longitude of the ascending node Omega, which significantly affects the stellar disk inclination. Furthermore, the combined effect of two-body relaxation and Omega-precession drives the stellar disk dismembering, displacing the stars from the disk. The impact of precession on the star orbits is stronger when the stellar disk and the inner gas ring are nearly coplanar. We speculate that the warm gas in the inner cavity might have played a major role in the evolution of the clockwise disk
    • 

    corecore