IUCrJ

Volume 1 (2014)

Supporting information for article:

On the correlation between hydrogen bonding and melting points in the inositols

Sándor L. Bekö, Edith Alig, Martin U. Schmidt and Jacco van de Streek

Bekö, S. L. , Alig, E. , Schmidt, M. U. & Van de Streek, J. (2014). **IUCrJ**, **1** doi:10.1107/S2052252513026511

Electronic Supporting Information

S1. Elemental analysis

Calculated for $C_6H_{12}O_6$ (%): C, 40.00; H, 6.71. Found for D-1-A: C, 39.74; H, 6.37. Found for *rac*-1: C, 39.70; H, 6.72. Found for 2-A: C, 40.08; H, 6.80. Found for 5-E: C, 39.76; H, 6.58. Found for 7-C: C, 39.92; H, 6.61.

S2. Rietveld refinements

The isostructurality (bar a reflection) of the crystal structure of D-(+)-chiro-inositol with that of L-(-)-chiro-inositol was confirmed through comparison of the experimental powder diffraction pattern of D-1-A with the powder pattern simulated from the single crystal structure of L-1-A. A crystal structure for D-1-A was obtained by starting from the single crystal structure of L-1-A and multiplying all atomic coordinates by -1. The resulting crystal structure was Rietveld refined with *TOPAS-Academic* 4.1. The positions of the hydrogen atoms were energy-optimised with a dispersion-corrected density functional theory method keeping the positions of the non-hydrogen atoms and the unit cell fixed.

The Rietveld plot for D-1-A is given in Fig. S1. The cif file for the crystal structure is part of the ESI of this paper.

Figure S1 Rietveld plot of D-1-A: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 5.

Figure S2 Rietveld plot of *rac*-1: observed (black), calculated (red) and difference (blue) profiles and tick marks for *rac*-1 (green) and D/L-1· $^{1}/_{3}$ H₂O (magenta). At about 32° in 2 θ the scale changes by a factor of 3.

Figure S3 Rietveld plot of 5-A: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 5.

Figure S4 Rietveld plot of 5-D: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 7.

Figure S5 Rietveld plot of 5-E: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 5.

Figure S6 Rietveld plot of 7-C: observed (black), calculated (red) and difference (blue) profiles and tick marks (green). At about 36° in 2θ the scale changes by a factor of 10.

S3. Pawley refinements on the rotator phases L-1-B, D-1-B, 5-C, 6-B and 5-B

All phases were measured with Cu- $K_{\alpha 1}$ radiation ($\lambda = 1.5406$ Å) in the range $2\theta = 2-80^{\circ}$ (the mixture of **5**-C and **5**-B was measured in the range 2-60°). All phases have chemical formula C₆H₁₂O₆, $M_r = 180.16$ g/mol. The Pawley fits, carried out with *TOPAS* 4.1, converged well for D-**1**-B:, F^* , a = 9.31568 Å, V = 808.432 Å³, Z = 4, measurement at 500 K, $R_{wp} = 0.0304$, $R_p = 0.0233$, $R_{exp} = 0.0280$ (before background subtraction), $R'_{wp} = 0.1584$, $R'_p = 0.1925$, $R'_{exp} = 0.1460$ (after background subtraction), $\chi^2 = 1.085$, for L-**1**-B: F^* , a = 9.31210 Å, V = 807.501 Å³, Z = 4, measurement at 500 K, $R_{wp} = 0.2013$, $R'_{p} = 0.2191$, $R'_{exp} = 0.0190$, $R_{exp} = 0.0190$ (before background subtraction), $R'_{wp} = 0.2013$, $R'_p = 0.2191$, $R'_{exp} = 0.1506$ (after background subtraction), $\chi^2 = 1.786$, for **5**-C: F^* , a = 9.33440 Å, V = 813.316 Å³, Z = 4, measurement at 500 K, $R_{wp} = 0.0601$, $R_p = 0.0461$, $R_{exp} = 0.0635$ (before background subtraction), $R'_{wp} = 0.2018$, $R'_p = 0.2947$, $R'_{exp} = 0.2132$ (after background subtraction), $\chi^2 = 0.947$ and for **6**-B: F^* , a = 9.26836 Å, V = 796.175 Å³, Z = 4, measurement at 473 K, $R_{wp} = 0.0404$, $R_p = 0.0304$, $R_{exp} = 0.0341$ (before background subtraction), $R'_{wp} = 0.1925$, $R'_p = 0.2689$, $R'_{exp} = 0.1624$ (after background subtraction), $\chi^2 = 1.185$. For **5**-B: $P3^*/P6^*$, a = 6.57509 Å, c = 10.5818 Å, V = 396.181 Å³, Z = 2, measurement at 473 K, $R_{wp} = 0.1624$ (after background subtraction), $\chi^2 = 1.185$. For **5**-B: $P3^*/P6^*$, a = 6.57509 Å, c = 10.5818 Å, V = 396.181 Å³, Z = 2, measurement at 473 K, $R_{wp} = 0.1624$ (after background subtraction), $\chi^2 = 1.185$. For **5**-B: $P3^*/P6^*$, a = 6.57509 Å, c = 10.5818 Å, V = 396.181 Å³, Z = 2, measurement at 473 K, $R_{wp} = 0.1624$ (after background subtraction), $\chi^2 = 1.185$. For **5**-B: $P3^*/P6^*$, a = 6.57509 Å, c = 10.5818 Å, V = 396.181 Å³, Z = 2,

0.0296, $R_p = 0.0225$, $R_{exp} = 0.0263$ (before background subtraction), $R'_{wp} = 0.1369$, $R'_p = 0.1663$, $R'_{exp} = 0.1214$ (after background subtraction), $\chi^2 = 1.127$.

The Pawley plots for D-1-B, L-1-B, 5-C, 6-B and 5-B are given in Fig. S7, Fig. S8, Fig. S9, Fig. S10 and Fig. S11, respectively.

Figure S7 Pawley plot of D-1-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).

Figure S8 Pawley plot of L-1-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).

Figure S9 Pawley plot of **5**-C with **5**-B present: observed (black), calculated (red) and difference (blue) profiles and tick marks for **5**-B (green) and **5**-C (magenta).

Figure S10 Pawley plot of **6**-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).

Figure S11Pawley plot of **5**-B: observed (black), calculated (red) and difference (blue) profiles and tick marks (green).

S4. Stability of 7-C

XRPD measurements after one, two and three months revealed that 7-C is not stable at room temperature and slowly transforms back to 7-A (see Fig. S12). As shown in Fig. S12 there are four clearly free reflections (021 reflection at 15.4°, 111 at 17.4°, 102 at 18.7° and 112 at 20.1°) which indicate the increase of 7-A in 7-C over a period of three months. After one month a ratio of approximately 7:1 between 7-C and 7-A can be observed, after two months the ratio increases to 3:1 and after three months the ratio increases to 1:5. Therefore it can be assumed that after a longer period of time 7-C converts back to 7-A completely and that 7-C is a meta-stable polymorph of 7. Therefore no thermal effect could be observed during the cool-down process in the DSC (see Fig. 18 in the paper). Additional DSC and T-XRPD measurements on 7 up to 250 °C yielded only a partial conversion of 7-A to 7-C. Therefore the crystal structure of 7-C was determined with a sample from DSC measurements heated up to 280 °C and cooled down to 20 °C.

Figure S12 Overlay of the X-ray powder diffraction traces of myo-inositol, **7**, showing the reference trace of **7**-C (black) and **7**-A (red), **7**-C after one month (blue), two months (green) and three months (violet) stored at room temperature. Black asterisks indicate the reflections of interest.

Figure S13 DSC trace of myo-inositol, **7**, measured from 280 down to 20 °C showing the recrystallisation of **7**-A from the melt at 186 °C.