194 research outputs found

    Neighbourhood crowding severely limits seed offspring recruitment in a temperate mesic old-field meadow

    Get PDF
    Testing the full impact of neighbourhood crowding within natural vegetation requires more than just effects incurred by established plants. It must also include measurements that take into account suppressive effects on the earliest plant life stages of resident individuals — seeds, their germination (emergence of radicles and cotyledons), and very young rooted seedlings. In this study, we explored the potential for these effects in a field experiment spanning three years, using a novel design for controlling granivory and small mammal herbivory. This allowed us to assess the limitations of natural crowding on seed recruitment success for non-resident species introduced into both natural and denuded neighbourhood plots within a temperate mesic old field meadow in eastern Ontario, Canada. Our results show that crowding by standing vegetation of resident species caused an overall reduction of seed recruitment success by more than 90%. These data provide strong inference that suppression resulting directly from near neighbour effects are likely to impose routinely intense natural selection within temperate mesic old field habitats like our study site. The consequences of this selection, in terms of traits promoting plant fitness under competition, are traditionally interpreted in terms of superior resource depletion/uptake, typically associated with greater growth accumulation and larger potential body size. We suggest, however, that these consequences are rare. Individuals of any species approach maximum potential body size only when near neighbour effects are relatively weak — not within crowded neighbourhoods. Recent studies suggest that severe neighbourhood crowding (where virtually all resident plants are forced to remain relatively small) selects instead for ‘reproductive economy’ — i.e., capacity to produce at least a few (or even at least one) offspring despite severe body size suppression, involving a relatively small minimum reproductive threshold size. Potential for additional component traits of reproductive economy are also suggested for investigation in future research

    Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates

    Full text link
    We consider dark matter consisting of weakly interacting massive particles (WIMPs) and revisit in detail its thermal evolution in the early universe, with a particular focus on models where the annihilation rate is enhanced by the Sommerfeld effect. After chemical decoupling, or freeze-out, dark matter no longer annihilates but is still kept in local thermal equilibrium due to scattering events with the much more abundant standard model particles. During kinetic decoupling, even these processes stop to be effective, which eventually sets the scale for a small-scale cutoff in the matter density fluctuations. Afterwards, the WIMP temperature decreases more quickly than the heat bath temperature, which causes dark matter to reenter an era of annihilation if the cross-section is enhanced by the Sommerfeld effect. Here, we give a detailed and self-consistent description of these effects. As an application, we consider the phenomenology of simple leptophilic models that have been discussed in the literature and find that the relic abundance can be affected by as much two orders of magnitude or more. We also compute the mass of the smallest dark matter subhalos in these models and find it to be in the range of about 10^{-10} to 10 solar masses; even much larger cutoff values are possible if the WIMPs couple to force carriers lighter than about 100 MeV. We point out that a precise determination of the cutoff mass allows to infer new limits on the model parameters, in particular from gamma-ray observations of galaxy clusters, that are highly complementary to existing constraints from g-2 or beam dump experiments.Comment: minor changes to match published versio

    Response of Solidago canadensis clones to competition

    Full text link
    Transplants of ten Solidago canadensis clones were grown under high and low competition in the field to determine whether clones differed in survival, growth, and reproduction under natural conditions. Transplants had higher probability of survival and flowering and were larger in all measures of size when competition was experimentally reduced. Clones differed in almost all these measures of success, but only when variance among transplants within clones was reduced by excluding transplants that experienced heavy herbivore damage. Differences among clones were more apparent under low competition than under high competition, despite higher coefficients of variation within clones under low competition. Adjusting transplant size for initial size (parent ramet rhizome mass) did not change these results, although clones did differ in parent rhizome mass. All of these results suggest that there is little potential for selection to discriminate among these clones. Despite the strong differences in transplant performance between the competition treatments and among clones, the clones did not differ in competitive ability-almost none of the clone x competition interactions were significant. In addition, the measures of success of each clone were usually positively correlated between the high and low competition treatments, suggesting there were no tradeoffs between performance under high and low competition for these clones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47776/1/442_2004_Article_BF00378042.pd

    Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    Get PDF
    Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production

    Pollination and dispersal trait spectra recover faster than the growth form spectrum during spontaneous succession in sandy old‐fields

    Get PDF
    Question: Spontaneous succession is the most natural and cost‐effective solution for grassland restoration. However, little is known about the time required for the recovery of grassland functionality, i.e., for the recovery of reproductive and vegetative processes typical of pristine grasslands. Since these processes operate at different scales, we addressed the question: do reproductive and vegetative processes require different recovery times during spontaneous succession? Location: Kiskunság sand region (Central Hungary). Methods: As combinations of plant traits can be used to highlight general patterns in ecological processes, we compared reproductive (pollination‐ and dispersal‐related) and vegetative (growth form) traits between recovered grasslands of different age (<10 years old; 10–20 years old; 20–40 years old) and pristine grasslands. Results: During spontaneous succession, the reproductive trait spectra became similar to those of pristine grasslands earlier than the vegetative ones. In arable land abandoned for 10 years, pollination‐ and dispersal‐related trait spectra did not show significant difference to those of pristine grasslands; anemophily and anemochory were the prevailing strategies. Contrarily, significant differences in the growth form spectrum could be observed even after 40 years of abandonment; in recovered grasslands erect leafy species prevailed, while the fraction of dwarf shrubs and tussock‐forming species was significantly lower than in pristine grasslands. Conclusions: The recovery of the ecological processes of pristine grasslands might require different amounts of time, depending on the spatial scale at which they operate. The reproductive trait spectra recovered earlier than the vegetative one, since reproductive attributes first determine plant species sorting at the regional level towards their respective habitats. The recovery of the vegetative trait spectrum needs more time as vegetative‐based interactions operate on a smaller spatial scale. Thus, vegetative traits might be more effective in the long‐term assessment of restoration success than the reproductive ones
    corecore