855 research outputs found
The Sunyaev-Zeldovich effect in superclusters of galaxies using gasdynamical simulations: the case of Corona Borealis
[Abridged] We study the thermal and kinetic Sunyaev-Zel'dovich (SZ) effect
associated with superclusters of galaxies using the MareNostrum Universe SPH
simulation. We consider superclusters similar to the Corona Borealis
Supercluster (CrB-SC). This paper is motivated by the detection at 33GHz of a
strong temperature decrement in the CMB towards the core of this supercluster.
Multifrequency observations with VSA and MITO suggest the existence of a
thermal SZ effect component in the spectrum of this cold spot, which would
account for roughly 25% of the total observed decrement. We identify nine
regions containing superclusters similar to CrB-SC, obtain the associated SZ
maps and calculate the probability of finding such SZ signals arising from hot
gas within the supercluster. Our results show that WHIM produces a thermal SZ
effect much smaller than the observed value. Neither can summing the
contribution of small clusters and galaxy groups in the region explain the
amplitude of the SZ signal. When we take into account the actual posterior
distribution from the observations, the probability that WHIM can cause a
thermal SZ signal like the one observed is <1%, rising up to a 3.2% when the
contribution of small clusters and galaxy groups is included. If the
simulations provide a suitable description of the gas physics, then we conclude
that the thermal SZ component of the CrB spot most probably arises from an
unknown galaxy cluster along the line of sight. The simulations also show that
the kinetic SZ signal associated with the supercluster cannot provide an
explanation for the remaining 75% of the observed cold spot in CrB.Comment: Accepted for publication in MNRAS. 14 pages, 9 figure
Loop Model with Generalized Fugacity in Three Dimensions
A statistical model of loops on the three-dimensional lattice is proposed and
is investigated. It is O(n)-type but has loop fugacity that depends on global
three-dimensional shapes of loops in a particular fashion. It is shown that,
despite this non-locality and the dimensionality, a layer-to-layer transfer
matrix can be constructed as a product of local vertex weights for infinitely
many points in the parameter space. Using this transfer matrix, the site
entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added,
(v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes
in the presentatio
Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 mu g/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 mu g/l, P = 0.0004; itself higher than the normal level (3.4 mu g/l, range from 0.5 to 17.2 mu g/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level >= 7 mu g/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels >= 7 mu g/l is 46%. Therefore, selection of patients with an AFP level above 7 mu g/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy
Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes
Quantum dots defined in carbon nanotubes are a platform for both basic
scientific studies and research into new device applications. In particular,
they have unique properties that make them attractive for studying the coherent
properties of single electron spins. To perform such experiments it is
necessary to confine a single electron in a quantum dot with highly tunable
barriers, but disorder has until now prevented tunable nanotube-based
quantum-dot devices from reaching the single-electron regime. Here, we use
local gate voltages applied to an ultra-clean suspended nanotube to confine a
single electron in both a single quantum dot and, for the first time, in a
tunable double quantum dot. This tunability is limited by a novel type of
tunnelling that is analogous to that in the Klein paradox of relativistic
quantum mechanics.Comment: 21 pages including supplementary informatio
Aberrant Splicing of the Senataxin Gene in a Patient with Ataxia with Oculomotor Apraxia Type 2
Ataxia with oculomotor apraxia type 2 (AOA2) is caused by a diversity of mutations within the coding region of the senataxin gene. Recently, rare noncoding senataxin mutations affecting RNA processing have been identified in AOA2. Here, we report the case of an 18-year-old woman, with classic clinical features of AOA2, who was found to harbor a mutation within senataxin intron 16. This mutation disrupts the local 5′ splice site architecture via a novel intronic frameshift mechanism, causing skipping of exon 16 with predicted disruption of the conserved DNA/RNA helicase domain. RNA processing mutations expand the growing complexity of pathogenic senataxin mutations
- …