58 research outputs found

    Coxiella burnetii Affects HIF1α Accumulation and HIF1α Target Gene Expression

    Get PDF
    HIF1α is an important transcription factor regulating not only cellular responses to hypoxia, but also anti-infective defense responses. We recently showed that HIF1α hampers replication of the obligate intracellular pathogen Coxiella burnetii which causes the zoonotic disease Q fever. Prior to development of chronic Q fever, it is assumed that the bacteria enter a persistent state. As HIF1α and/or hypoxia might be involved in the induction of C. burnetii persistence, we analyzed the role of HIF1α and hypoxia in the interaction of macrophages with C. burnetii to understand how the bacteria manipulate HIF1α stability and activity. We demonstrate that a C. burnetii-infection initially induces HIF1α stabilization, which decreases then over the course of an infection. This reduction depends on bacterial viability and a functional type IV secretion system (T4SS). While neither the responsible T4SS effector protein(s) nor the molecular mechanism leading to this partial HIF1α destabilization have been identified, our results demonstrate that C. burnetii influences the expression of HIF1α target genes in multiple ways. Therefore, a C. burnetii infection promotes HIF1α-mediated upregulation of several metabolic target genes; affects apoptosis-regulators towards a more pro-apoptotic signature; and under hypoxic conditions, shifts the ratio of the inflammatory genes analyzed towards a pro-inflammatory profile. Taken together, C. burnetii modulates HIF1α in a still elusive manner and alters the expression of multiple HIF1α target genes

    Antimicrobial resistance- and pathogen patterns in the fecal microbiota of sows and their offspring in German commercial pig farms

    Get PDF
    Reducing antibiotic use is one of the biggest challenges in pig farming, as antibiotics have been used for years to control typical problems such as newborn or post-weaning diarrhea. The pressure a one health approach has created on animal production regarding antimicrobial resistance is an opportunity to find other strategies against enterobacterial pathogens in suckling and weaned piglets. A farm-specific approach could have a good success due to the individual farm structures in Germany and other countries. In this study, non-metric multidimensional scaling, hierarchical clustering, and latent class analysis were used to determine the impact of antibiotic use on antibiotic resistance patterns and pathogen prevalence in 20 German pig farms. This may help to develop individualized health strategies. 802 fresh fecal samples were collected from sows and piglets from 20 piglet production and rearing farms at different production times (sows antepartum and postpartum, suckling piglets, weaned piglets). In addition, the use of antibiotics was recorded. DNA extracts were subjected to quantitative real-time qPCR with primers specific for antibiotic resistance genes (int1, sul1-3, dfrA1, mcr-1, blaCTX-M), and virulence factors of relevant bacteria (C. difficile, C. perfringens, Salmonella, Escherichia/Shigella/Hafnia, E. coli). Linear and logistic regression models were used to analyze the relationship between different antibiotics and the major genes contributing to the clustering of observations for the different animal groups. Clustering revealed different farm clusters for sows, suckling piglets, and weaned piglets, with the most remarkable diversity in antibiotic use among weaned piglets. Amoxicillin, lincomycin, and enrofloxacin were identified as the most probable cause of increased odds of the presence of relevant antibiotic resistance genes (mcr1, dfrA1, blaCTX-M). Still, direct effects of a specific antibiotic on its associated resistance gene were rare. Enrofloxacin and florfenicol favored the occurrence of C. difficile in sows. The E. coli fimbriae genes were less affected by antibiotic use in sows and piglets, but the F4 fimbriae gene could be associated with the integrase 1 gene in piglets. The results confirm that multidrug-resistant enterobacteria are widespread in German pig farms and give awareness of the impact of current antibiotic use while searching for alternative health strategies

    MyD88 Is Required for Efficient Control of Coxiella burnetii Infection and Dissemination

    Get PDF
    The intracellular pathogen Coxiella (C.) burnetii causes Q fever, a usually self-limiting respiratory infection that becomes chronic and severe in some patients. Innate immune recognition of C. burnetii and its role in the decision between resolution and chronicity is not understood well. However, TLR2 is important for the response to C. burnetii in mice, and genetic polymorphisms in Myd88 have been associated with chronic Q fever in humans. Here, we have employed MyD88-deficient mice in infection models with the attenuated C. burnetii Nine Mile phase II strain (NMII). Myd88−/− macrophages failed to restrict the growth of NMII in vitro, and to upregulate production of the cytokines TNF, IL-6, and IL-10. Following intraperitoneal infection, NMII bacterial burden was significantly higher on day 5 and 20 in organs of Myd88−/− mice. After infection via the natural route by intratracheal injection, a higher bacterial load in the lung and increased dissemination of NMII to other organs was observed in MyD88-deficient mice. While wild-type mice essentially cleared NMII on day 27 after intratracheal infection, it was still readily detectable on day 42 in multiple organs in the absence of MyD88. Despite the elevated bacterial load, Myd88−/− mice had less granulomatous inflammation and expressed significantly lower levels of chemoattractants, inflammatory cytokines, and of several IFNγ-induced genes relevant for control of intracellular pathogens. Together, our results show that MyD88-dependent signaling is essential for early control of C. burnetii replication and to prevent systemic spreading. The continued presence of NMII in the organs of Myd88−/− mice constitutes a new mouse model to study determinants of chronicity and resolution in Q fever

    Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions

    Get PDF
    Abstract Various factors of the tissue microenvironment such as the oxygen concentration influence the host–pathogen interaction. During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions

    The Coxiella burnetii Dot/Icm System Delivers a Unique Repertoire of Type IV Effectors into Host Cells and Is Required for Intracellular Replication

    Get PDF
    Coxiella burnetii, the causative agent of human Q fever, is an intracellular pathogen that replicates in an acidified vacuole derived from the host lysosomal network. This pathogen encodes a Dot/Icm type IV secretion system that delivers bacterial proteins called effectors to the host cytosol. To identify new effector proteins, the functionally analogous Legionella pneumophila Dot/Icm system was used in a genetic screen to identify fragments of C. burnetii genomic DNA that when fused to an adenylate cyclase reporter were capable of directing Dot/Icm-dependent translocation of the fusion protein into mammalian host cells. This screen identified Dot/Icm effectors that were proteins unique to C. burnetii, having no overall sequence homology with L. pneumophila Dot/Icm effectors. A comparison of C. burnetii genome sequences from different isolates revealed diversity in the size and distribution of the genes encoding many of these effectors. Studies examining the localization and function of effectors in eukaryotic cells provided evidence that several of these proteins have an affinity for specific host organelles and can disrupt cellular functions. The identification of a transposon insertion mutation that disrupts the dot/icm locus was used to validate that this apparatus was essential for translocation of effectors. Importantly, this C. burnetii Dot/Icm-deficient mutant was found to be defective for intracellular replication. Thus, these data indicate that C. burnetii encodes a unique subset of bacterial effector proteins translocated into host cells by the Dot/Icm apparatus, and that the cumulative activities exerted by these effectors enables C. burnetii to successfully establish a niche inside mammalian cells that supports intracellular replication

    The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterium that causes Query (Q) fever, a zoonotic disease. It requires a functional type IV secretion system (T4SS) which translocate bacterial effector proteins into the host cell cytoplasm and thereby facilitates bacterial replication. To date, more than 130 effector proteins have been identified, but their functions remain largely unknown. Recently, we demonstrated that one of these proteins, CaeA (CBU1524) localized to the host cell nucleus and inhibited intrinsic apoptosis of HEK293 or CHO cells. In the present study we addressed the question whether CaeA also affects the extrinsic apoptosis pathway. Ectopic expression of CaeA reduced extrinsic apoptosis and prevented the cleavage of the executioner caspase 7, but did not impair the activation of initiator caspase 9. CaeA expression resulted in an up-regulation of survivin (an inhibitor of activated caspases), which, however, was not causal for the anti-apoptotic effect of CaeA. Comparing the sequence of CaeA from 25 different C. burnetii isolates we identified an EK (glutamic acid/ lysine) repetition motif as a site of high genetic variability. The EK motif of CaeA was essential for the anti-apoptotic activity of CaeA. From these data, we conclude that the C. burnetii effector protein CaeA interferes with the intrinsic and extrinsic apoptosis pathway. The process requires the EK repetition motif of CaeA, but is independent of the upregulated expression of survivin.This work was supported by the Deutsche Forschungsgemeinschaft (SFB796 project B8) to AL and by the ERA-NET PathoGenoMics 3rd call to AL and JPG

    Bovine blood derived macrophages are unable to control Coxiella burnetii replication under hypoxic conditions

    Get PDF
    Background Coxiella burnetii is a zoonotic pathogen, infecting humans, livestock, pets, birds and ticks. Domestic ruminants such as cattle, sheep, and goats are the main reservoir and major cause of human infection. Infected ruminants are usually asymptomatic, while in humans infection can cause significant disease. Human and bovine macrophages differ in their permissiveness for C. burnetii strains from different host species and of various genotypes and their subsequent host cell response, but the underlying mechanism(s) at the cellular level are unknown. Methods C. burnetii infected primary human and bovine macrophages under normoxic and hypoxic conditions were analyzed for (i) bacterial replication by CFU counts and immunofluorescence; (ii) immune regulators by westernblot and qRT-PCR; cytokines by ELISA; and metabolites by gas chromatography-mass spectrometry (GC-MS). Results Here, we confirmed that peripheral blood-derived human macrophages prevent C. burnetii replication under oxygen-limiting conditions. In contrast, oxygen content had no influence on C. burnetii replication in bovine peripheral blood-derived macrophages. In hypoxic infected bovine macrophages, STAT3 is activated, even though HIF1α is stabilized, which otherwise prevents STAT3 activation in human macrophages. In addition, the TNFα mRNA level is higher in hypoxic than normoxic human macrophages, which correlates with increased secretion of TNFα and control of C. burnetii replication. In contrast, oxygen limitation does not impact TNFα mRNA levels in C. burnetii-infected bovine macrophages and secretion of TNFα is blocked. As TNFα is also involved in the control of C. burnetii replication in bovine macrophages, this cytokine is important for cell autonomous control and its absence is partially responsible for the ability of C. burnetii to replicate in hypoxic bovine macrophages. Further unveiling the molecular basis of macrophage-mediated control of C. burnetii replication might be the first step towards the development of host directed intervention measures to mitigate the health burden of this zoonotic agent

    Divergent effects of itaconate isomers on Coxiella burnetii growth in macrophages and in axenic culture

    Get PDF
    Aconitate decarboxylase-1 (ACOD1) is expressed by activated macrophages and generates itaconate that exerts anti-microbial and immunoregulatory effects. ACOD1-itaconate is essential for macrophage-mediated control of the intracellular pathogen Coxiella (C.) burnetii, which causes Q fever. Two isomers of itaconate, mesaconate and citraconate, have overlapping yet distinct activity on macrophage metabolism and inflammatory gene expression. Here, we found that all three isomers inhibited the growth of C. burnetii in axenic culture in ACCM-2 medium. However, only itaconate reduced C. burnetii replication efficiently in Acod1-/- macrophages. In contrast, addition of citraconate strongly increased C. burnetii replication in Acod1+/- macrophages, whereas mesaconate weakly enhanced bacterial burden in Acod1-/- macrophages. Analysis of intracellular isomers showed that exogenous citraconate and mesaconate inhibited the generation of itaconate by infected Acod1+/- macrophages. Uptake of added isomers into Acod1-/- macrophages was increased after infection for itaconate and mesaconate, but not for citraconate. Mesaconate, but not citraconate, competed with itaconate for uptake into macrophages. Taken together, inhibition of itaconate generation by macrophages and interference with the uptake of extracellular itaconate could be identified as potential mechanisms behind the divergent effects of citraconate and mesaconate on C. burnetii replication in macrophages or in axenic culture

    The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription

    Get PDF
    Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection
    • …
    corecore