10 research outputs found
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
Sepiolite and palygorskite-underpinned regulation of mRNA expression of pro-inflammatory cytokines as determined by a murine inflammation model
This paper shows that clay minerals, sepiolite and palygorskite collected from Torrejón El Rubio and Vallecas, Spain, respectively, altered the expression of four, namely, pro-inflammatory cytokines: interleukins IL-1 and IL-6, tumor necrosis factor (TNF-α), and interferon gamma (IFN-γ) as determined using a 12-O-tetradecanoylphorbol-13-acetate model for inflammation. Quantitative RT-PCR analyses after 4 and 24 h inflammatory stimuli showed that sepiolite or palygorskite brought about a reduction in mRNA expression. Sepiolite provoked the highest mRNA expression inhibition for all cytokines, except for TNF-α, and primarily after 4 h. Conversely, the anti-inflammatory effect for cytokine TNF-α was found to be true in the presence of palygorskite. Most notably, the significant reduction in mRNA expression of IL-1 registered just shortly after exposure pointed to that the anti-inflammatory effect may be important for modulation of the late inflammatory response. These clay minerals caused modifications in the mRNA expression of IL-1 and its receptor in endothelial cells and downstreaming inflammatory cascades resulting in the recruitment of neutrophils. In addition, polymorphonuclear peroxidase activity was severely reduced just after short exposure to either sepiolite or palygorskite. Evidence provided herein agree well with the idea that these clay minerals impaired neutrophils infiltration to inflamed skin, notwithstanding ear edema and deficient cell localization to skin coupled with such impairment may affect the later stages of inflammation.Peer reviewe
Sepiolite and palygorskite regulate gene expression of pro-inflammatory cytokines as determined by a murine inflammation model
Trabajo presentado a la XVI International Clay Conference (ICC), celebrada en Granada (España) del 17 al 21 de julio de 2017This presentation shows that sepiolite and palygorskite collected from Torrejón El Rubio and Vallecas, Spain
modulate the inflammatory environment at its initial phase, consequently modify the initial and late phases of
inflammation as well as edema in skin. At the same time, both clay minerals exert an effect on the recruitment of
neutrophils to inflamed skin. These clay minerals, particularly sepiolite, cause a down-regulation of pro-inflammatory cytokine expressions, particularly those intrinsic of interleukin (IL-1) and tumor necrosis factor (TNF-α). The
result is the modification of the local microenvironment at both stages of inflammation. We explain the effects of
clay minerals on gene expression of pro-inflammatory cytokines because interactions between surface hydroxyl
groups (≡Si-OH) and cytokines to form aggregates (e.g., ≡Si-O×××CO-NH-R), and subsequent stable organomineral derivatives (e.g., ≡Si-O-CO-NH-R); [1]]. Specifically, we propose binding of cytokine-gene promoter moieties at surface sites (type N or P) [2]. Taken together, results presented herein serve as the basis to support the
potential use of these clay minerals as a therapeutic tool against inflammatory diseases.
First, as determined by the 12-O-tetradecanoylphorbol-13-acetate model for inflammation [3], sepiolite and palygorskite altered the expression of four pro-inflammatory cytokines, namely, interleukins IL-1 andIL-6, TNF-α, and
interferon gamma (IFN-γ).
Second, Reverse Transcription Polymerase Chain Reaction (RT-PCR) analyses after 4 and 24 h inflammatory stimuli showed that either clay mineral brought about a reduction in mRNA expression. Sepiolite provoked the highest
mRNA expression inhibition for all cytokines, except for TNF-α, and primarily after 4 h. Conversely, the anti-inflammatory effect for cytokine TNF-α was found to be true in the presence of palygorskite. Most notably was the
significant reduction in mRNA expression of IL-1, registered just shortly after exposure, in keeping with the notion
that the anti-inflammatory effect may be important for modulation of the late inflammatory response. Furthermore,
sepiolite and palygorskite caused modifications in the mRNA expression of IL-1 and its receptor in endothelial
cells and downstreaming inflammatory cascades resulting in the recruitment of neutrophils. Most remarkably, the
activity of polymorphonuclear peroxidase was severely reduced just after short exposure to either clay mineral.
In summary, sepiolite and palygorskite impaired neutrophils infiltration to inflamed skin [4], notwithstanding ear
edema and deficient cell localization to skin coupled with such impairment may affect the later stages of inflammation [2,5].Peer reviewe
Analysis of RNA yield in extracellular vesicles isolated by membrane affinity column and differential ultracentrifugation.
Extracellular vesicles (EV) have attracted much attention as potential biomarkers due to their protein, RNA and other nucleic acid content. The most common method used for EV isolation is differential ultracentrifugation (DU), however given the DU technical difficulties, other more practical methods have surged, such as membrane-affinity column commercial kits. Here, we assessed one commercial kit in terms of EV recovery and EV-derived RNA yield and compared it with a DU protocol. Our data shows that the commercial kit preparation results in a lower count of EV-like structures and a reduced expression of EV markers when compared to DU samples. Thus, apparently suggesting that the commercial kit had a lower EV yield. However, these findings did not reflect on RNA yield, which was greater with the commercial kit, even after an enzymatic treatment with proteinase K and RNAse A. We conclude that the kit has a higher EV-derived RNA yield in comparison to our DU protocol, suggesting that it may be the method of choice for RNA sequencing purposes
Clinical manifestations of intermediate allele carriers in Huntington disease
Objective: There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. Methods: We assessed a cohort of participants at risk with <36 CAG repeats of the huntingtin (HTT) gene. Outcome measures were the Unified Huntington's Disease Rating Scale (UHDRS) motor, cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided into IA carriers (27-35 CAG) and controls (<27 CAG) and younger vs older participants. IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. Results: Of 12,190 participants, 657 (5.38%) with <36 CAG repeats were identified: 76 IA carriers (11.56%) and 581 controls (88.44%). After correcting for multiple comparisons, at baseline, we found no significant differences between IA carriers and controls for total UHDRS motor, SF-36, behavioral, cognitive, or TFC scores. However, older participants with IAs had higher chorea scores compared to controls (p 0.001). Linear regression analysis showed that aging was the most contributing factor to increased UHDRS motor scores (p 0.002). On the other hand, 1-year follow-up data analysis showed IA carriers had greater cognitive decline compared to controls (p 0.002). Conclusions: Although aging worsened the UHDRS scores independently of the genetic status, IAs might confer a late-onset abnormal motor and cognitive phenotype. These results might have important implications for genetic counseling. ClinicalTrials.gov identifier: NCT01590589
Clinical and genetic characteristics of late-onset Huntington's disease
Background: The frequency of late-onset Huntington's disease (>59 years) is assumed to be low and the clinical course milder. However, previous literature on late-onset disease is scarce and inconclusive. Objective: Our aim is to study clinical characteristics of late-onset compared to common-onset HD patients in a large cohort of HD patients from the Registry database. Methods: Participants with late- and common-onset (30–50 years)were compared for first clinical symptoms, disease progression, CAG repeat size and family history. Participants with a missing CAG repeat size, a repeat size of ≤35 or a UHDRS motor score of ≤5 were excluded. Results: Of 6007 eligible participants, 687 had late-onset (11.4%) and 3216 (53.5%) common-onset HD. Late-onset (n = 577) had significantly more gait and balance problems as first symptom compared to common-onset (n = 2408) (P <.001). Overall motor and cognitive performance (P <.001) were worse, however only disease motor progression was slower (coefficient, −0.58; SE 0.16; P <.001) compared to the common-onset group. Repeat size was significantly lower in the late-onset (n = 40.8; SD 1.6) compared to common-onset (n = 44.4; SD 2.8) (P <.001). Fewer late-onset patients (n = 451) had a positive family history compared to common-onset (n = 2940) (P <.001). Conclusions: Late-onset patients present more frequently with gait and balance problems as first symptom, and disease progression is not milder compared to common-onset HD patients apart from motor progression. The family history is likely to be negative, which might make diagnosing HD more difficult in this population. However, the balance and gait problems might be helpful in diagnosing HD in elderly patients
Risk of COVID-19 after natural infection or vaccinationResearch in context
Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
Recommended from our members
Risk of COVID-19 after natural infection or vaccinationResearch in context
Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health