15 research outputs found

    Mitochondrial dysfunction and oxidative stress in rheumatoid arthritis

    Get PDF
    Review[Abstract] Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.Instituto de Salud Carlos III; PI17/00404Instituto de Salud Carlos III; PI18/01803Instituto de Salud Carlos III; PI19/01206Instituto de Salud Carlos III; PI20/00793Instituto de Salud Carlos III; PI21/01969Instituto de Salud Carlos III; RICORS RD21/0002/0009Xunta de Galicia; IN607A2017/11Xunta de Galicia; IN607D2020/1

    Decreased metalloproteinase production as a response to mechanical pressure in human cartilage: a mechanism for homeostatic regulation

    Get PDF
    Articular cartilage is optimised for bearing mechanical loads. Chondrocytes are the only cells present in mature cartilage and are responsible for the synthesis and integrity of the extracellular matrix. Appropriate joint loads stimulate chondrocytes to maintain healthy cartilage with a concrete protein composition according to loading demands. In contrast, inappropriate loads alter the composition of cartilage, leading to osteoarthritis (OA). Matrix metalloproteinases (MMPs) are involved in degradation of cartilage matrix components and have been implicated in OA, but their role in loading response is unclear. With this study, we aimed to elucidate the role of MMP-1 and MMP-3 in cartilage composition in response to mechanical load and to analyse the differences in aggrecan and type II collagen content in articular cartilage from maximum- and minimum-weight-bearing regions of human healthy and OA hips. In parallel, we analyse the apoptosis of chondrocytes in maximal and minimal load areas. Because human femoral heads are subjected to different loads at defined sites, both areas were obtained from the same hip and subsequently evaluated for differences in aggrecan, type II collagen, MMP-1, and MMP-3 content (enzyme-linked immunosorbent assay) and gene expression (real-time polymerase chain reaction) and for chondrocyte apoptosis (flow cytometry, bcl-2 Western blot, and mitochondrial membrane potential analysis). The results showed that the load reduced the MMP-1 and MMP-3 synthesis (p < 0.05) in healthy but not in OA cartilage. No significant differences between pressure areas were found for aggrecan and type II collagen gene expression levels. However, a trend toward significance, in the aggrecan/collagen II ratio, was found for healthy hips (p = 0.057) upon comparison of pressure areas (loaded areas > non-loaded areas). Moreover, compared with normal cartilage, OA cartilage showed a 10- to 20-fold lower ratio of aggrecan to type II collagen, suggesting that the balance between the major structural proteins is crucial to the integrity and function of the tissue. Alternatively, no differences in apoptosis levels between loading areas were found – evidence that mechanical load regulates cartilage matrix composition but does not affect chondrocyte viability. The results suggest that MMPs play a key role in regulating the balance of structural proteins of the articular cartilage matrix according to local mechanical demands

    Autophagy activation by resveratrol reduces severity of experimental rheumatoid arthritis

    Get PDF
    Instituto de Salud Carlos III; RETIC‐RIER RD16/0012/0002Instituto de Salud Carlos III; PI12/02771Instituto de Salud carlos III; AGRUP2015/05Instituto de Salud Carlos III; AGRUP2018/0

    The mitochondrial inhibitor oligomycin induces an inflammatory response in the rat knee joint

    Get PDF
    [Abstract] Background. Recent findings support a connection between mitochondrial dysfunction and activation of inflammatory pathways in articular cells. This study investigates in vivo in an acute model whether intra-articular administration of oligomycin, an inhibitor of mitochondrial function, induces an oxidative and inflammatory response in rat knee joints. Methods. Oligomycin was injected into the rat left knee joint on days 0, 2, and 5 before joint tissues were obtained on day 6. The right knee joint served as control. Results were evaluated by macroscopy and histopathology and by measuring cellular and mitochondrial reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE, a marker of lipid peroxidation), nuclear factor erythroid 2-related factor 2 (Nrf2), and CD68 (macrophages) and chemokine levels. The marker of mitochondrial mass COX-IV was also evaluated. Results. The macroscopic findings showed significantly greater swelling in oligomycin-injected knees than in control knees. Likewise, the histological score of synovial damage was also increased significantly. Immunohistochemical studies showed high expression of IL-8, coinciding with a marked infiltration of polymorphonuclears and CD68+ cells in the synovium. Mitochondrial mass was increased in the synovium of oligomycin-injected joints, as well as cellular and mitochondrial ROS production, and 4-HNE. Relatedly, expression of the oxidative stress-related transcription factor Nrf2 was also increased. As expected, no histological differences were observed in the cartilage; however, cytokine-induced neutrophil chemoattractant-1 mRNA and protein expression were up-regulated in this tissue. Conclusions. Mitochondrial failure in the joint is able to reproduce the oxidative and inflammatory status observed in arthritic joints.Instituto de Salud Carlos III; 09/02340Instituto de Salud Carlos III, RD12/0009/0018, RIERGalicia. Consellería de Innovación, Industria e Comercio; PXIB916357PRInstituto de Salud Carlos III; PI12/02771Xunta de Galicia; PS09/56Galicia. Consellería de Economía e Industria; INCITE 09E1R916139ESGalicia. Consellería de Economía e Industria; IN845B2010/176Galicia. Consellería de Economía e Industria; 10CSA916035P

    The mitochondrial inhibitor oligomycin induces an inflammatory response in the rat knee joint

    Get PDF
    [Abstract] Background. Recent findings support a connection between mitochondrial dysfunction and activation of inflammatory pathways in articular cells. This study investigates in vivo in an acute model whether intra-articular administration of oligomycin, an inhibitor of mitochondrial function, induces an oxidative and inflammatory response in rat knee joints. Methods. Oligomycin was injected into the rat left knee joint on days 0, 2, and 5 before joint tissues were obtained on day 6. The right knee joint served as control. Results were evaluated by macroscopy and histopathology and by measuring cellular and mitochondrial reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE, a marker of lipid peroxidation), nuclear factor erythroid 2-related factor 2 (Nrf2), and CD68 (macrophages) and chemokine levels. The marker of mitochondrial mass COX-IV was also evaluated. Results. The macroscopic findings showed significantly greater swelling in oligomycin-injected knees than in control knees. Likewise, the histological score of synovial damage was also increased significantly. Immunohistochemical studies showed high expression of IL-8, coinciding with a marked infiltration of polymorphonuclears and CD68+ cells in the synovium. Mitochondrial mass was increased in the synovium of oligomycin-injected joints, as well as cellular and mitochondrial ROS production, and 4-HNE. Relatedly, expression of the oxidative stress-related transcription factor Nrf2 was also increased. As expected, no histological differences were observed in the cartilage; however, cytokine-induced neutrophil chemoattractant-1 mRNA and protein expression were up-regulated in this tissue. Conclusions. Mitochondrial failure in the joint is able to reproduce the oxidative and inflammatory status observed in arthritic joints.Instituto de Salud Carlos III; 09/02340Instituto de Salud Carlos III, RD12/0009/0018, RIERGalicia. Consellería de Innovación, Industria e Comercio; PXIB916357PRInstituto de Salud Carlos III; PI12/02771Xunta de Galicia; PS09/56Galicia. Consellería de Economía e Industria; INCITE 09E1R916139ESGalicia. Consellería de Economía e Industria; IN845B2010/176Galicia. Consellería de Economía e Industria; 10CSA916035P

    Effect of nitric oxide on mitochondrial activity of human synovial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) is a messenger implicated in the destruction and inflammation of joint tissues. Cartilage and synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) have high levels of NO. NO is known to modulate various cellular pathways and, thus, inhibit the activity of the mitochondrial respiratory chain (MRC) of chondrocytes and induce the generation of reactive oxygen species (ROS) and cell death in multiple cell types. For these reasons, and because of the importance of the synovial membrane in development of OA pathology, we investigated the effects of NO on survival, mitochondrial function, and activity of fibroblastic human OA synovial cells.</p> <p>Methods</p> <p>Human OA synovia were obtained from eight patients undergoing hip joint replacement. Sodium nitroprusside (SNP) was used as a NO donor compound and cell viability was evaluated by MTT assays. Mitochondrial function was evaluated by analyzing the mitochondrial membrane potential (Δψm) with flow cytometry using the fluorofore DePsipher. ATP levels were measured by luminescence assays, and the activities of the respiratory chain complexes (complex I: NADH CoQ<sub>1 </sub>reductase, complex II: succinate dehydrogenase, complex III: ubiquinol-cytochrome c reductase, complex IV: cytochrome c oxidase) and citrate synthase (CS) were measured by enzymatic assay. Protein expression analyses were performed by western blot.</p> <p>Results</p> <p>SNP at a concentration of 0.5 mM induced cell death, shown by the MTT method at different time points. The percentages of viable cells at 24, 48 and 72 hours were 86.11 ± 4.9%, 74.31 ± 3.35%, and 43.88 ± 1.43%, respectively, compared to the basal level of 100% (*<it>p </it>< 0.05). SNP at 0.5 mM induced depolarization of the mitochondrial membrane at 12 hours with a decrease in the ratio of polarized cells (basal = 2.48 ± 0.28; SNP 0.5 mM = 1.57 ± 0.11; *<it>p </it>< 0.01). The time course analyses of treatment with SNP at 0.5 mM demonstrated that treatment reliably and significantly reduced intracellular ATP production (68.34 ± 14.3% vs. basal = 100% at 6 hours; *<it>p </it>< 0.05). The analysis of the MRC at 48 hours showed that SNP at 0.5 mM increased the activity of complexes I (basal = 36.47 ± 3.92 mol/min/mg protein, SNP 0.5 mM = 58.08 ± 6.46 mol/min/mg protein; *<it>p </it>< 0.05) and III (basal = 63.87 ± 6.93 mol/min/mg protein, SNP 0.5 mM = 109.15 ± 30.37 mol/min/mg protein; *<it>p </it>< 0.05) but reduced CS activity (basal = 105.06 ± 10.72 mol/min/mg protein, SNP at 0.5 mM = 66.88 ± 6.08 mol/min/mg protein.; *<it>p </it>< 0.05), indicating a decrease in mitochondrial mass. Finally, SNP regulated the expression of proteins related to the cellular cycle; the NO donor decreased bcl-2, mcl-1 and procaspase-3 protein expression.</p> <p>Conclusions</p> <p>This study suggests that NO reduces the survival of OA synoviocytes by regulating mitochondrial functionality, as well as the proteins controlling the cell cycle.</p

    A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis

    Get PDF
    Copyright © 2015 by the American Society of Nephrology. In patients undergoing peritoneal dialysis (PD), chronic exposure to nonphysiologic PD fluids elicits low-grade peritoneal inflammation, leading to fibrosis and angiogenesis. Phenotype conversion of mesothelial cells into myo fibroblasts, the so-called mesothelial-to-mesenchymal transition (MMT), significantly contributes to the peritoneal dysfunction related to PD. A number of factors have been described to induce MMT in vitro and in vivo, of which TGF-β1 is probably the most important. The vasoconstrictor peptide endothelin-1 (ET-1) is a transcriptional target of TGF-β1 and mediates excessive scarring and fibrosis in several tissues. This work studied the contribution of ET-1 to the development of peritoneal damage and failure in a mouse model of PD. ET-1 and its receptors were expressed in the peritoneal membrane and upregulated on PD fluid exposure. Administration of an ET receptor antagonist, either bosentan or macitentan, markedly attenuated PD-induced MMT, fibrosis, angiogenesis, and peritoneal functional decline. Adenovirus-mediated overexpression of ET-1 induced MMT in humanmesothelial cells in vitro and promoted the early cellular events associated with peritoneal dysfunction in vivo. Notably, TGF-β1-blocking peptides prevented these actions of ET-1. Furthermore, a positive reciprocal relationship was observed between ET-1 expression and TGF-β1 expression in human mesothelial cells. These results strongly support a role for an ET-1/TGF-β1 axis as an inducer of MMT and subsequent peritoneal damage and fibrosis, and they highlight ET-1 as a potential therapeutic target in the treatment of PD-associated dysfunction.We thank Macarena Quesada, Eva M. Blanco, and Jorge García for their technical assistance. O.B. is a recipient of a fellowship from the Ministerio de Economía y Competitividad (Formación de Personal Investigador). This work was supported by Ministerio de Economía y Competitividad Plan Nacional de I+D+I Grants SAF2012-31388 (to S.L.), SAF2010-21249 (to M.L.-C.), SAF2009-09085 (to F.R.-P.), and SAF2012-34916 (to F.R.-P.); Instituto de Salud “Carlos III” Grant REDinREN RD12/ 0021/0009 (to S.L. and F.R.-P.); Comunidad Autónoma de Madrid Grant 2010-BMD2321 (FIBROTEAM Consortium); and a grant from Fundación Renal “Iñigo Alvárez de Toledo.Peer Reviewe
    corecore