6 research outputs found

    Medidas cautelares en el nuevo código procesal civil de Nicaragua

    No full text
    Tesis (Lic. en Derecho)-Universidad Nacional Autónoma de Nicaragua, LeónUNAN-LEÓ

    Digitization and virtual reality projects in archaeological heritage. The case of the archaeological site of Motilla del Azuer in Daimiel (Ciudad Real)

    Full text link
    [ES] Este artículo tiene como objetivo presentar el proyecto de virtualización del yacimiento arqueológico de la Motilla del Azuer, en la localidad de Daimiel (Ciudad Real, España). En líneas generales, esta actividad está posibilitando obtener unos beneficios interesantes en torno a la investigación, documentación, interpretación y divulgación de este enclave prehistórico. La incorporación de herramientas tecnológicas en el campo del patrimonio arqueológico y cultural, como la documentación digital y la realidad virtual (RV), están constituyendo un impulso relevante para favorecer la gestión de este legado. Los avances experimentados en áreas como la digitalización 3D y la RV permiten desarrollar estas técnicas sobre una amplia tipología de bienes culturales, de diferentes características y cronologías, abriendo un considerable abanico de posibilidades. En este sentido, las valoraciones que está ofreciendo la aplicación de estos instrumentos, en virtud de los resultados alcanzados en diversos lugares, están significando una experiencia positiva para cualquier territorio; útil para aproximarse a su pasado y atractivo desde el punto de vista económico, cultural y social. Es por ello que cada vez son más las instituciones y entidades interesadas en este sector. En el caso del yacimiento arqueológico de la Motilla del Azuer, las labores de digitalización y virtualización emprendidas, junto con otras actividades de difusión, han generado productos de gran utilidad para el conocimiento y promoción de este monumento. Como se expone en las siguientes páginas, la correcta combinación de la digitalización 3D y la RV está suponiendo una dinamización de sus contenidos, un estímulo para disfrutar plenamente de la riqueza de sus vestigios y una mayor accesibilidad hacia los  mismos.Destacados:• Este artículo presenta un proyecto que está permitiendo avanzar en la interpretación y difusión del yacimiento arqueológico de la Motilla del Azuer.• Apuesta por la incorporación de las nuevas tecnologías en la gestión del patrimonio arqueológico y cultural• Desarrollo de una experiencia provechosa para favorecer la accesibilidad al patrimonio e impulsar la democratización cultural a través de su proyección.[EN] This article presents the virtualization project of the Motilla del Azuer archaeological site in Daimiel (Ciudad Real, Spain). This project is using new and unique tools for the research, documentation, interpretation and dissemination of this important prehistoric site. The incorporation of advanced technological tools in the field of archaeological and cultural heritage, such as digital documentation and virtual reality (VR), are creating new avenues for managing cultural legacies. Modern advances in 3D digitization and VR allow the application of these techniques on a wide range of cultural assets with different characteristics and chronologies, opening a broad spectrum of new possibilities in research, education, and public outreach. This is an expanding area of heritage management as it creates a positive impact on the economic, cultural and social activities of local communities and regions. Because of these positive impacts, more and more stakeholders such as institutions, administrations, and heritage organisations are taking an active interest in this sector of technological development. In the case of the Motilla del Azuer archaeological site, the digitization and virtualization work undertaken, along with other dissemination activities, have provided critical products for the presentation, interpretation, and promotion of this monument.La Motilla del Azuer is one of the most unique archaeological sites in Spain. Dating from the Bronze Age, it is a fortification with a central plan, formed by three lines of concentric walls distributed around a central tower (Fig. 2). Inside, the labyrinthine shape of the access systems is remarkable, made up of narrow corridors, stairs, ramps... This defensive enclosure allowed the protection and control of essential products for the people of the Bronze Age. Its true uniqueness is that it encloses monumental water well more than 15 m deep.La Motilla del Azuer is open to the public and receives thousands of visitors each year. But for conservation reasons, the number of people who can access the site is highly controlled. Likewise, due to its defensive nature and its age, it is a space through which it is difficult to circulate, which makes it impossible for people with reduced mobility to visit. For these and other reasons, the Daimiel City Council in collaboration with the US non-profit entity Global Digital Heritage and the Spanish company Myou Software, has developed a project to digitize the archaeological site and make it accessible through an installed VR system, located permanently in the Daimiel Museum, the interpretation centre for the site (Fig. 10). This facility is designed to be used both by people in wheelchairs or with reduced mobility, as well as all visitors to the museum, and provides a realistic virtual tour of the site. To achieve this level of realism, a detailed 3D digitization of the site using photogrammetry, laser scanning, and 3D spherical photography was undertaken, and a VR installation based on the use of an HTC Vive Pro device that has motion controllers for hands (HTC Vive controllers) and feet (HTC Vive Trackers) was developed. The primary software is called Myou Engine, an open-source 3D engine compatible with XR, developed by the Myou Software company. In order to increase the immersiveness as much as possible, the Myou Software company has also developed a control system called Natural Locomotion that works by moving the arms and legs (Fig. 11).The final result of the project has allowed the implementation of an innovative VR space that increases accessibility to the archaeological site, represents a new tourist attraction for the town, and promotes new ways of managing and enjoying archaeological heritage.Torres Mas, M.; López-Menchero Bendicho, VM.; López Tercero, J.; Torrejón Valdelomar, J.; Maschner, H. (2022). Proyectos de digitalización y realidad virtual en el patrimonio arqueológico. El caso del yacimiento de la Motilla del Azuer en Daimiel (Ciudad Real). Virtual Archaeology Review. 13(26):135-146. https://doi.org/10.4995/var.2022.15004OJS1351461326Akiduki, H., Nishiike, S.,Watanabe, H., Matsuoka, K., Kubo, T., & Takeda, N. (2003). Visual-vestibular conflict induced by virtual reality in humans. Neuroscience Letters, 340(3), 197-200. https://doi.org/10.1016/S0304-3940(03)00098-3Alshawabkeh, Y., El-Khalili, M., Almasri, E., Bala'awi, F., & Al-Massarweh, A. (2020). Heritage documentation using laser scanner and photogrammetry. The case study of Qasr Al-Abidit, Jordan. Digital Applications in Archaeology and Cultural Heritage, 16, e00133. https://doi.org/10.1016/j.daach.2019.e00133Angulo, Mª. I. (2018). Conservación y restauración en el yacimiento arqueológico de la Motilla del Azuer, campañas 2015 y 2016. In IV Jornadas de Historia de Daimiel (pp. 31-44). Daimiel: Ayuntamiento de Daimiel.Barrera Mayo, S., & Baeza Santamaría, U. (2010). La Realidad Virtual aplicada a la explotación sostenible del Patrimonio Arqueológico. Un caso éxito: la Cueva de Santimamiñe. Virtual Archaeology Review, 1(1), 69-72. https://doi.org/10.4995/var.2010.4775Codina Falgas, F., de Prado, G., Ruiz, I., & Sierra, A. (2017). El proyecto de reconstrucción virtual de la ciudad ibérica de Ullastret. In La Ciencia y el arte VI: Ciencias experimentales y conservación del patrimonio (pp. 246-254). Ministerio de Educación Cultura y Deporte, Subdirección General de Documentación y Publicaciones.Galeazzi, F. (2018). 3-D virtual replicas and simulations of the past: "real" or "fake" representations?. Current Anthropology, 59(3), 268-286. https://doi.org/10.1086/697489Gavgani, A. M., Walker, F. R., Hodgson, D. M., & Nalivaiko, E. (2018). A comparative study of cybersickness during exposure to virtual reality and "classic" motion sickness: Are they different?. Journal of Applied Physiology, 125(6), 1670-1680. https://doi.org/10.1152/japplphysiol.00338.2018García Fortes, S., & Flos, N. (2008). Conservación y restauración de bienes arqueológicos. Madrid: Editorial Síntesis.Gisbert Santaballa, A. G. (2019). La arqueología virtual como herramienta didáctica y motivadora. Tecnología, Ciencia y Educación, 13, 119-147. https://doi.org/10.51302/tce.2019.287Hernández, L., Taibo, J., Seoane, A., Jaspe, A., & López, R. (2008). Interfaces naturales para contenidos digitales interactivos en museos. La experiencia de Galicia Dixital. Revista del Centro de Investigación de la Universidad la Salle, 8(29), 37-42. https://doi.org/10.26457/recein.v8i29.210Jiménez, S. A., Al-Oumaoui, I., Nájera, T., & Molina, F. (2008). Salud y enfermedad en La Motilla del Azuer: una población de la Edad del Bronce en La Mancha. Revista Española de Antropología Física, 28, 57-70.Kersten, T. P., Tschirschwitz, F., & Deggim, S. (2017). Development of a virtual museum including a 4d presentation of building history in virtual reality. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 361-368. https://doi.org/10.5194/isprs-archives-XLII-2-W3-361-2017Leung, A., Davies, S., & Ching, S. (2018). When new technology joins old documents and east meets west: virtually reconstructing the Fisher Island Pagoda Lighthouse (China). Virtual Archaeology Review, 9(18), 12-27. https://doi.org/10.4995/var.2018.7982López-Menchero Bendicho, V. M. (2012). Manual para la puesta en valor del patrimonio arqueológico al aire libre. Gijón: Ediciones Trea.López-Menchero Bendicho, V. M. (2013). International Guidelines for Virtual Archaeology: The Seville Principles. In C. Corsi, B. Slapšak, & F. Vermeulen (Eds.), Good Practice in Archaeological Diagnostics: Non-invasive Survey of Complex Archaeological Sites (pp. 269-283). Cham: Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-01784-6_16López-Menchero, V. M., Flores, M., Vicent, M., & Grande, A. (2017). Digital Heritage and Virtual Archaeology: An Approach Through the Framework of International Recommendations. In M. Ioannides, N. Magnenat-Thalmann, & G. Papagiannakis (Eds.), Mixed Reality and Gamification for Cultural Heritage, (pp. 3-26). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49607-8_1Lužnik-Jancsary, N., Horejs, B., Klein, M., & Schwall, C. (2020). Integration and workflow framework for virtual visualisation of cultural heritage. Revisiting the tell of Çukuriçi Höyük, Turkey. Virtual Archaeology Review, 11(23), 63-74. https://doi.org/10.4995/var.2020.13086Martín, M., Molina, F., Blanco, I., & Nájera, T. (2004). Actuaciones y restauración en la Motilla del Azuer (Daimiel, Ciudad Real). In R. García Huerta & J. Morales Hervás (Coords.), La Península Ibérica en el II mil. a.C.: poblados y fortificaciones (pp. 215-232). Cuenca: Ediciones de la Universidad de Castilla-La Mancha.Moysiadis, A. K. (2018). Photogrammetry and interactive 3d virtual tour to the outreach of cultural heritage. the case study of the church of Panagia Episkepsi, Trikala, Greece, In: ICOMOS 19th General Assembly and Scientific Symposium "Heritage and Democracy", 13-14 December 2017, New Delhi, India.Nájera, T., & Molina, F. (2004). Las motillas: un modelo de asentamiento con fortificación central en la Llanura Manchega. In R. García Huerta & J. Morales Hervás (Coords.), La Península Ibérica en el II mil. a.C.: poblados y fortificaciones (pp. 172-217). Cuenca: Ediciones de la Universidad de Castilla-La Mancha.Nájera, T., Molina, F., Cámara, J. A., Afonso, J. A., & Spanedda, L. (2019). Análisis estadístico de las dataciones radiocarbónicas de la Motilla del Azuer (Daimiel, Ciudad Real). Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 29, 309-351. https://doi.org/10.30827/cpag.v29i0.9780Nájera, T., Jiménez, S. A., Molina, F., Delgado, A., & Laffranchi, Z. (2012). La aplicación de los métodos de la antropología física a un yacimiento arqueológico: la Motilla del Azuer. Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 22, 149-182. https://doi.org/10.30827/cpag.v22i0.2422Noardo, F. (2018). Architectural heritage semantic 3D documentation in multi-scale standard maps. Journal of Cultural Heritage, 32, 156-165. https://doi.org/10.1016/j.culher.2018.02.009Pietroni, E., & Adami, A. (2014). Interacting with Virtual Reconstructions in Museums: The Etruscanning Project. Journal on Computing and Cultural Heritage, 2(7), 1-29. https://doi.org/10.1145/2611375Pietroni, E., Forlani, M., & Rufa, C. (2015). Livia's Villa Reloaded: An example of re-use and update of a pre-existing Virtual Museum, following a novel approach in storytelling inside virtual reality environments. In 2015 Digital Heritage, Granada, Spain (pp. 511-518). https://doi.org/10.1109/DigitalHeritage.2015.7419567Sánchez Meseguer, J. L., & Galán, C. (2019). La cronología del Cerro de la Encantada: estratigrafía, dataciones radiocarbónicas y paleoclimatología. Calatrava Estudios. Revista de Estudios Calatravos, 1, 89-130.Santacana, J., & Serrat, N. (2005) (Coords.). Museografía didáctica. Barcelona: Ariel.Tilden, F. (2009). Interpreting our heritage. Chapel Hill: The University of North Carolina Press.Torres Mas, M. (2016). De motillas a poblados en altura: el poblamiento de La Mancha Occidental en el II milenio a.n.e. In F. Alía, J. Anaya, L. Mansilla, & J. Sánchez (Coords.), II Congreso Nacional Ciudad Real y su provincia (pp. 42-61). Ciudad Real: Instituto de Estudios Manchegos.Torres Mas, M. (2020). La Motilla del Azuer y el modelo de gestión del patrimonio cultural del Ayuntamiento de Daimiel 2013-2017. In J. Onrubia, V. M. López-Menchero, D. Rodríguez, & J. Morales (Eds.), LEGATUM 2.0. Musealización y Puesta en Valor del Patrimonio Cultural: I Congreso Internacional (pp. 273-284). Cuenca: Ediciones de la Universidad de Castilla-La Mancha. https://doi.org/10.18239/congresos_2020.22.28Torres, M., Angulo, M. I., Álvarez, H., & Rodríguez, D. (2021). El patrimonio de Daimiel a través de la arqueología: investigación, rehabilitación y difusión. In V Jornadas de Historia de Daimiel (pp. 267-283). Daimiel: Ayuntamiento de Daimiel.Walmsley, A., & Kersten, T. P. (2019). Low-cost development of an interactive, immersive virtual reality experience of the historic city model stade 1620. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W17, 405-411. https://doi.org/10.5194/isprs-archives-XLII-2-W17-405-2019Weech, S., Moon, J., & Troje, N. F. (2018). Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS ONE, 13(3), 1-21. https://doi.org/10.1371/journal.pone.019413

    General method for the synthesis of 5-arylpyrrole-2-carboxylic acids

    No full text
    5-Arylpyrrole-2-carboxylic acids are prepared by DDQ oxidative aromatization of the corresponding ethyl 2-aryl-DELTA1-pyrroline-5-carboxylate followed by basic hydrolysis.This research was conducted under the Spanish FARMA II programme (Ministerio de lndustria). J. V. is grateful to Lilly,S. A. for a fellowship

    RecruitNet: A global database of plant recruitment networks

    No full text
    Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications

    RecruitNet: A global database of plant recruitment networks

    Get PDF
    Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants (“canopy species”) and plants in their early stages of recruitment (“recruit species”). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications
    corecore