90 research outputs found

    Control PD de Robots: Dinámica de Actuadores y Nueva Sintonía

    Get PDF
    ResumenEn el presente trabajo se estudia el control PD con compensación deseada de gravedad de robots rígidos. Se introduce un nuevo criterio, menos conservador, para seleccionar las ganancias proporcionales. Se demuestra estabilidad asintótica global cuando se toma en consideración durante el diseño la dinámica eléctrica de los motores de CD con escobillas usados como actuadores. Este resultado no requiere que la dinámica eléctrica de los actuadores sea rápida comparada con la dinámica de la parte mecánica. Se presenta un estudio formal de la técnica de control conocida como control de par la cual es ampliamente utilizada en la práctica industrial

    Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks

    Full text link
    Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere's three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere's vertical stratification and general circulation. Specifically, the new measure "cross-betweenness" identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective

    Study of the hydrogen escape rate at Mars during Martian years 28 and 29 from comparisons between SPICAM/Mars Express observations and GCM-LMD simulations

    Get PDF
    EPSC-DPS Joint Meeting 2019, held 15-20 September 2019 in Geneva, Switzerland, id. EPSC-DPS2019-499-2.- © Author(s) 2019. CC Attribution 4.0 license. https://creativecommons.org/licenses/by/4.0/deed.esWe simulate the 3D Martian hydrogen corona during the Martian years 28 and 29 at different solar longitudes using a set of models of atomic hydrogen density from the surface to the exosphere. These simulations are compared to Mars Express / SPICAM observations and show a strong underestimate of the brightness by our models near southern summer that could be due to an underestimate of the amount of water vapor delivered to the upper atmosphere at this season

    Second-line treatment in advanced gastric cancer : Data from the Spanish AGAMENON registry

    Get PDF
    Second-line treatments boost overall survival in advanced gastric cancer (AGC). However, there is a paucity of information as to patterns of use and the results achieved in actual clinical practice. The study population comprised patients with AGC in the AGAMENON registry who had received second-line. The objective was to describe the pattern of second-line therapies administered, progression-free survival following second-line (PFS-2), and post-progression survival since first-line (PPS). 2311 cases with 2066 progression events since first-line (89.3%) were recorded; 245 (10.6%) patients died during first-line treatment and 1326/2066 (64.1%) received a second-line. Median PFS-2 and PPS were 3.1 (95% CI, 2.9-3.3) and 5.8 months (5.5-6.3), respectively. The most widely used strategies were monoCT (56.9%), polyCT (15.0%), ramucirumab+CT (12.6%), platinum-reintroduction (8.3%), trastuzumab+CT (6.1%), and ramucirumab (1.1%). PFS-2/PPS medians gradually increased in monoCT, 2.6/5.1 months; polyCT 3.4/6.3 months; ramucirumab+CT, 4.1/6.5 months; platinum-reintroduction, 4.2/6.7 months, and for the HER2+ subgroup in particular, trastuzumab+CT, 5.2/11.7 months. Correlation between PFS since first-line and OS was moderate in the series as a whole (Kendall's τ = 0.613), lower in those subjects who received second-line (Kendall's τ = 0.539), especially with ramucirumab+CT (Kendall's τ = 0.413). This analysis reveals the diversity in second-line treatment for AGC, highlighting the effectiveness of paclitaxel-ramucirumab and, for a selected subgroup of patients, platinum reintroduction; both strategies endorsed by recent clinical guidelines

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Salt stress induced damages on the photosynthesis of physic nut young plants

    Get PDF
    Salinity is a major limiting factor to crop productivity in the world especially in semiarid regions. The aim of this study was to evaluate the photosynthetic resistance of Jatropha curcas (L.) young plants subjected to salt stress. The experiment was carried out in a completely randomized design with treatments in a 2 x 3 factorial: two NaCl levels (0 and 100 mmol L-1) and three harvest times: 7 and 14 days of salt exposure and three days of recovery. Leaf Na+ and Cl-concentrations and the K+/Na+ ratios, after seven days of salt exposure, did not reach ionic toxic levels, suggesting that the NaCl-induced osmotic effects prevailed over the ionic ones. Under this condition, the salt stress caused reduction in leaf gas exchange parameters, such as CO2 fixation, stomatal conductance and transpiration. In contrast, salt stress did not change the photochemical efficiency of photossystem II. Conversely, after 14 days of treatment, Na+ and Clions reached very high concentrations, up to toxic levels in leaves. Under such conditions, both leaf gas exchange and photochemistry suffered strong impairment probably caused by ionic toxicity. The recovery treatment for 3d did not significantly decrease the leaf salt concentrations and no improvement was observed in the photosynthetic performance. Physic nut young plants are sensitive to high NaCl-salinity conditions, with high leaf Na+ and Cl- concentrations, low K+/Na+ ratio and great photosynthetic damages due to stomatal and biochemical limitations.A salinidade é um dos principais fatores que limitam a produtividade das culturas no mundo principalmente em regiões semiáridas. Avaliou-se a resistência da fotossíntese de plantas jovens de pinhãomanso (Jatropha curcas L.) submetidas ao estresse salino. O experimento foi realizado em delineamento inteiramente casualizado com tratamentos em fatorial 2 x 3: duas concentrações de NaCl (0 e 100 mmol L-1) e três tempos de avaliação (7 e 14 dias de exposição e três dias de recuperação). As concentrações de Na+ e Cl- e a relação K+/Na+ nas folhas, após sete dias de exposição ao sal, não indicaram níveis tóxicos, sugerindo os efeitos osmóticos induzidos pelo NaCl prevaleceram sobre as causas iônicas. Sob essas condições, o estresse salino causou redução nos parâmetros de trocas gasosas, como fixação de CO2, condutância estomática e transpiração, mas ao contrário, não alterou a eficiência fotoquímica do fotossistema II. Após 14 dias de tratamento, os íons salinos atingiram concentrações muito elevadas nas folhas, provavelmente atingindo níveis tóxicos. Em tais condições, as trocas gasosas e a atividade fotoquímica sofreram forte redução causada pelo estresse iônico. O tratamento de recuperação não induziu queda intensa nas concentrações dos íons salinos nas folhas e nenhuma melhoria foi observada no desempenho fotossintético. Plantas jovens de pinhão manso são sensíveis a condições de salinidade elevada por NaCl, mostrando altas concentrações de Na+ e Cl-, baixa razão K+/Na+ e danos fotossintéticos intensos causados tanto por limitações estomáticas como por limitações bioquímicas

    Fotossíntese, relações hídricas e crescimento de cafeeiros jovens em relação à disponibilidade de fósforo

    Get PDF
    O objetivo deste trabalho foi avaliar de que maneira a alta disponibilidade de fósforo no solo afeta a fotossíntese e o crescimento de mudas de cafeeiro arábica (Coffea arabica). Mudas da cultivar Ouro Verde com aproximadamente quatro meses de idade, cultivadas com boa disponibilidade hídrica, foram submetidas a três tratamentos quanto à disponibilidade de fósforo: quantidade recomendada de P, na literatura (PA); duas vezes a dosagem utilizada em PA (P+); e sem adição de P ao solo (P-). Após 70 dias da aplicação dos tratamentos, foram avaliados: as trocas gasosas, a atividade fotoquímica, o potencial de água da folha, a condutância hidráulica da planta (K L), a partição de matéria seca na planta, os teores de pigmentos e carboidratos, e a composição química das folhas. O tratamento P- influenciou negativamente a fotossíntese, e levou à restrição do crescimento das plantas. As plantas do tratamento P+ apresentaram maior teor foliar de P (~1,9 g kg-1), com incrementos na assimilação de CO2, na eficiência instantânea de carboxilação e na atividade fotoquímica - maior eficiência do fotossistema II e maior transporte aparente de elétrons - em relação às plantas do tratamento PA. Houve aumento em K L, maior teor de carboidratos foliares e maior teor de clorofila nas plantas que receberam o dobro da dose recomendada de P, as quais apresentaram maior produção de matéria seca em relação às de PA e P-

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    corecore