54 research outputs found

    Factores de éxito de las series y sagas

    Get PDF
    Las series cinematográficas son más que una simple sucesión de películas. A la vez que son un fenómeno que caracteriza la industria cinematográfica hollywoodiense constituye un mecanismo de reducción de la aleatoriedad en el mercado (incertidumbre sobre el éxito). Las series comparten con las películas no seriadas varias pautas de comportamiento tendentes a asegurar el éxito –actores conocidos, directores, alto presupuesto, etc- y utilizan mecanismos específicos como el merchandising y la asociación de marcas. El merchandising debe ser visto como una actividad tendente a aumentar la rentabilidad de las series –mediante la venta de derechos sobre determinados símbolos- a la vez que como vehículo de publicidad. El merchandiding es también un elemento de fidelización de un determinado grupo de personas- los fieles-, por lo que se da un cierto efecto club.Cinema series are more than a mere sequence of films. they are also a phenomenon which characterizes the hollywood film industry and provide a way of reducing the risk of failure within the market. The cinema series and sagas share certain characteristics which tend to assure their success: famous actors and directors, high budgets, etc. They also use specific means such as merchandising and brand association. merchandising must be considered As an activity which tends to increase the profitability of series through the sale of the rights to use certain symbols associated with the films and which also provide increased publicity. moreover, merchandising promotes a kind of loyalty among certain groups of people, thereby creating the sensation of belonging to a type of club

    Serotonin is involved in the psychostimulant and hypothermic effect of 4-methylamphetamine in rats.

    Get PDF
    4-Methylamphetamine (4-MA) has recently emerged as a designer drug of abuse in Europe and it is consumed always with amphetamine. There have been reported some deaths and non-fatal intoxications related to 4-MA. We investigated the changes in locomotor activity and body temperature after 4-MA administration to male Sprague-Dawley rats. Our experiments were carried out at a normal or high ambient temperature. 4-MA (2.5-10 mg/Kg, given subcutaneously) increased, in a dose-dependent manner, the horizontal locomotor activity that was significantly reduced by ketanserin, p-cholorophenylalanine (pCPA) or haloperidol, but not by pindolol. In addition, we have studied the effect of 4-MA on core body temperature by means of an implanted electronic thermograph, enabling continuous measurement of body temperature. We observed a dose-dependent hypothermic response to 4-MA that reached a maximum 45 min after a single injection. We also evidenced slight tachyphylaxis to the hypothermic effect when 4-MA was administered four times in a 2 h interval. The pre-treatment of animals with pCPA or pindolol, but not with ketanserin, fully abolished the hypothermic effect of 4-MA. With all that, we conclude that hypothermia induced by 4-MA is due to the release of 5-HT which activates postsynaptic 5-HT1A receptors

    Cancer Salivary Biomarkers for Tumours Distant to the Oral Cavity

    Get PDF
    The analysis of saliva as a diagnostic approach for systemic diseases was proposed just two decades ago, but recently great interest in the field has emerged because of its revolutionary potential as a liquid biopsy and its usefulness as a non-invasive sampling method. Multiple molecules isolated in saliva have been proposed as cancer biomarkers for diagnosis, prognosis, drug monitoring and pharmacogenetic studies. In this review, we focus on the current status of the salivary diagnostic biomarkers for different cancers distant to the oral cavity, noting their potential use in the clinic and their applicability in personalising cancer therapiesS

    Effect of the combination of mephedrone plus ethanol on serotonin and dopamine release in the nucleus accumbens and medial prefrontal cortex of awake rats

    Get PDF
    Cathinones, such as mephedrone (Meph), are often co-abused with alcoholic drinks. In the present study, we investigated the combined effects of Meph plus ethanol (EtOH) on neurotransmitter release in the nucleus accumbens (NAc) and the medial prefrontal cortex (mPFC). A guide canula was stereotaxically implanted into either the NAc or the mPFC of male Sprague-Dawley rats. Seven days after surgery, a microdialysis probe was inserted and rats were administered saline, EtOH (1 g/kg, i.p.), Meph (25 mg/kg, s.c.), or their combination, and dialysates were collected. Serotonin (5-HT), dopamine (DA), and their metabolites (5-HIAA, DOPAC and HVA) were determined through high-pressure liquid chromatography coupled to mass spectrometry. 5-HT and DA peaked 40 min after Meph administration (with or without EtOH co-treatment) in both areas. EtOH combined with Meph increased the 5-HT release compared with the rats receiving Meph alone (85% in NAc, 65% in mPFC), although the overall change in the area under the curve only reached statistical significance in the NAc. In mPFC, the increased release of 5-HT lasted longer in the combination than that in the Meph group. Moreover, EtOH potentiated the psychostimulant effect of Meph measured as a locomotor activity. Given that both 5-HT and DA are also related with reward and impulsivity, the observed effects point to an increased risk of abuse liability when combining Meph with EtOH compared with consuming these drugs alone

    Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse

    Get PDF
    Rationale Methylone, a new drug of abuse sold as"bath salts' has similar effects to ecstasy or cocaine. Objective We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage, induced by methylone in the frontal cortex, hippocampus and striatum of mice and according two different treatment schedules. Methods Methylone was given subcutaneously to male Swiss CD1 mice and at an ambient temperature of 26ºC. Treatment A: three doses of 25 mg/Kg at 3.5 h interval between doses for two consecutive days. Treatment B: four doses of 25 mg/Kg at 3 h interval in one day. Results Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. Conclusions The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3 h intervals, which is in accordance with its short half-life

    Dose and time-dependent selective neurotoxicity induced by mephedrone in mice.

    Get PDF
    Mephedrone is a drug of abuse marketed as 'bath salts'. There are discrepancies concerning its long-term effects. We have investigated the neurotoxicity of mephedrone in mice following different exposition schedules. Schedule 1: four doses of 50 mg/kg. Schedule 2: four doses of 25 mg/kg. Schedule 3: three daily doses of 25 mg/kg, for two consecutive days. All schedules induced, in some animals, an aggressive behavior and hyperthermia as well as a decrease in weight gain. Mephedrone (schedule 1) induced dopaminergic and serotoninergic neurotoxicity that persisted 7 days after exposition. At a lower dose (schedule 2) only a transient dopaminergic injury was found. In the weekend consumption pattern (schedule 3), mephedrone induced dopamine and serotonin transporter loss that was accompanied by a decrease in tyrosine hydroxylase and tryptophan hydroxylase 2 expression one week after exposition. Also, mephedrone induced a depressive-like behavior, as well as a reduction in striatal D2 density, suggesting higher susceptibility to addictive drugs. In cultured cortical neurons, mephedrone induced a concentration-dependent cytotoxic effect. Using repeated doses for 2 days in an elevated ambient temperature we evidenced a loss of frontal cortex dopaminergic and hippocampal serotoninergic neuronal markers that suggest injuries at nerve endings

    Effects of MDPV on dopamine transporter regulation in male rats. Comparison with cocaine.

    Get PDF
    RATIONALE: MDPV (3,4-methylenedioxypyrovalerone) is a synthetic cathinone present in bath salts. It is a powerful psychostimulant and blocker of the dopamine transporter (DAT), like cocaine. It is known that acute exposure to psychostimulants induces rapid changes in DAT function. OBJECTIVES: To investigate the effects of MDPV on DAT function comparing with cocaine. METHODS: Binding of [3H]WIN 35428 was performed on PC 12 cells treated with MDPV and washed. Rat striatal synaptosomes were incubated with MDPV or cocaine (1 μM) for 1 h and [3H]dopamine (DA) uptake was performed. Also, different treatments with MDPV or cocaine were performed in Sprague-Dawley rats to assess locomotor activity and ex vivo [3H]DA uptake. RESULTS: MDPV increased surface [3H]WIN 35428 binding on PC 12 cells. In vitro incubation of synaptosomes with MDPV produced significant increases in Vmax and KM for [3H]DA uptake. In synaptosomes from MDPV- (1.5 mg/kg, s.c.) and cocaine- (30 mg/kg, i.p.) treated rats, there was a significantly higher and more persistent increase in [3H]DA uptake in the case of MDPV than cocaine. Repeated doses of MDPV developed tolerance to this DAT upregulation and 24 h after the 5-day treatment with MDPV, [3H]DA uptake was reduced. However, a challenge with the same drugs after withdrawal recovered the DAT upregulation by both drugs and showed an increased response to MDPV vs the first dose. At the same time, animals were sensitized to the stereotypies induced by both psychostimulants. CONCLUSIONS: MDPV induces a rapid and reversible functional upregulation of DAT more powerfully and lasting than cocaine

    7,8-Dihydroxyflavone blocks the development of behavioral sensitization to MDPV, but not to cocaine: Differential role of the BDNF-TrkB pathway

    Get PDF
    3,4-Methylenedioxypyrovalerone (MDPV) acts as a dopamine transporter blocker and exerts powerful psychostimulant effects. In this study we aimed to investigate the bidirectional cross-sensitization between MDPV and cocaine, as well as to evaluate the role of the BDNF-TrkB signaling pathway in the development of locomotor sensitization to both drugs. Mice were treated with MDPV (1.5 mg/kg) or cocaine (10 or 15 mg/kg) once daily for 5 days. After withdrawal (10 days), animals were challenged with cocaine (8 mg/kg) or MDPV (1 mg/kg). For biochemical determinations, MDPV (1.5 mg/kg) or cocaine (15 mg/kg) were administered acutely or repeatedly, and BDNF, D3R and G9a transcription levels as well as pro- and mature BDNF protein levels were determined. Our results demonstrate that repeated administration of MDPV or cocaine sensitizes to cocaine and MDPV locomotor effects. After an acute or a repeated exposure to MDPV, cortical mRNA BDNF levels were increased, while a decrease in mBDNF protein levels in the nucleus accumbens 2 h after repeated exposure was evidenced. Interestingly, such decline was involved in the development of locomotor sensitization, thus the pretreatment with 7,8-dihydroxyflavone (10 mg/kg), a TrkB agonist, blocked the development of sensitization to MDPV but not to cocaine, for which no changes in the BDNF-TrkB signaling pathway were observed at early withdrawal. In conclusion, a bidirectional cross-sensitization between MDPV and cocaine was evidenced. Our findings suggest that decreased BDNF-TrkB signaling has an important role in the behavioral sensitization to MDPV, pointing TrkB modulation as a target to prevent MDPV sensitization Keywords: MDPV, Cocaine, Sensitization, BDNF, 7,8-Dihydroxyflavon

    A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure

    Get PDF
    Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing, zebrafish was exposed to 40 mg/L of METH for 48h, and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure followed 3h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse

    Neuroadaptive changes and behavioral effects after a sensitization regime of MDPV

    Get PDF
    3,4-methylenedioxypyrovalerone (MDPV) is a synthetic cathinone with cocaine-like properties. In a previous work, we exposed adolescent mice to MDPV, finding sensitization to cocaine effects, and a higher vulnerability to cocaine abuse in adulthood. Here we sought to determine if such MDPV schedule induces additional behavioral-neuronal changes that could explain such results. After MDPV treatment (1.5 mg·kg-1, twice daily, 7 days), mice were behaviorally tested. Also, we investigated protein changes in various brain regions MDPV induced aggressiveness and anxiety, but also contributed to a faster habituation to the open field. This feature co-occurred with an induction of ΔFosB in the orbitofrontal cortex that was higher than its expression in the ventral striatum. Early after treatment, D2R:D1R ratio pointed to a preponderance of D1R but, upon withdrawal, the ratio recovered. Increased expression of Arc, CDK5 and TH, and decrease in DAT protein levels persisted longer after withdrawal, pointing to a neuroplastic lasting effect similar to that involved in cocaine addiction. The implication of the hyperdopaminergic condition in the MDPV-induced aggressiveness cannot be ruled out. We also found an initial oxidative effect of MDPV, without glial activation. Moreover, although initially the dopaminergic signal induced by MDPV resulted in increased ΔFosB, we did not observe any change in NFκB or GluA2 expression. Finally, the changes observed after MDPV treatment could not be explained according to the autoregulatory loop between ΔFosB and the epigenetic repressor G9a described for cocaine. This provides new knowledge about the neuroadaptive changes involved in the vulnerability to psychostimulant addiction
    corecore