603 research outputs found

    Auditory affective processing requires awareness

    Get PDF
    Recent work has challenged the previously widely accepted belief that affective processing does not require awareness and can be carried out with more limited resources than semantic processing. This debate has focused exclusively on visual perception, even though evidence from both human and animal studies suggests that existence for nonconscious affective processing would be physiologically more feasible in the auditory system. Here we contrast affective and semantic processing of nonverbal emotional vocalizations under different levels of awareness in three experiments, using explicit (two-alternative forced choice masked affective and semantic categorization tasks, Experiments 1 and 2) and implicit (masked affective and semantic priming, Experiment 3) measures. Identical stimuli and design were used in the semantic and affective tasks. Awareness was manipulated by altering stimulus-mask signal-to-noise ratio during continuous auditory masking. Stimulus awareness was measured on each trial using a four-point perceptual awareness scale. In explicit tasks, neither affective nor semantic categorization could be performed in the complete absence of awareness, while both tasks could be performed above chance level when stimuli were consciously perceived. Semantic categorization was faster than affective evaluation. When the stimuli were partially perceived, semantic categorization accuracy exceeded affective evaluation accuracy. In implicit tasks neither affective nor semantic priming occurred in the complete absence of awareness, whereas both affective and semantic priming emerged when participants were aware of the primes. We conclude that auditory semantic processing is faster than affective processing, and that both affective and semantic auditory processing are dependent on awareness

    37 GHz observations of narrow-line Seyfert 1 galaxies

    Get PDF
    Observations at 37 GHz, performed at Mets\"ahovi Radio Observatory, are presented for a sample of 78 radio-loud and radio-quiet narrow-line Seyfert 1 (NLS1) galaxies, together with additional lower and higher frequency radio data from RATAN-600, Owens Valley Radio Observatory, and the Planck satellite. Most of the data have been gathered between February 2012 and April 2015 but for some sources even longer lightcurves exist. The detection rate at 37 GHz is around 19%, comparable to other populations of active galactic nuclei presumed to be faint at radio frequencies, such as BL Lac objects. Variability and spectral indices are determined for sources with enough detections. Based on the radio data, many NLS1 galaxies show a blazar-like radio spectra exhibiting significant variability. The spectra at a given time are often inverted or convex. The source of the high-frequency radio emission in NLS1 galaxies, detected at 37 GHz, is most probably a relativistic jet rather than star formation. Jets in NLS1 galaxies are therefore expected to be a much more common phenomenon than earlier assumed.Comment: Accepted for publication in A&A. Table of 37 GHz data will be available at the CDS soo

    A multifrequency analysis of radio variability of blazars

    Full text link
    We have carried out a multifrequency analysis of the radio variability of blazars, exploiting the data obtained during the extensive monitoring programs carried out at the University of Michigan Radio Astronomy Observatory (UMRAO, at 4.8, 8, and 14.5 GHz) and at the Metsahovi Radio Observatory (22 and 37 GHz). Two different techniques detect, in the Metsahovi light curves, evidences of periodicity at both frequencies for 5 sources (0224+671, 0945+408, 1226+023, 2200+420, and 2251+158). For the last three sources consistent periods are found also at the three UMRAO frequencies and the Scargle (1982) method yields an extremely low false-alarm probability. On the other hand, the 22 and 37 GHz periodicities of 0224+671 and 0945+408 (which were less extensively monitored at Metsahovi and for which we get a significant false-alarm probability) are not confirmed by the UMRAO database, where some indications of ill-defined periods about a factor of two longer are retrieved. We have also investigated the variability index, the structure function, and the distribution of intensity variations of the most extensively monitored sources. We find a statistically significant difference in the distribution of the variability index for BL Lac objects compared to flat-spectrum radio quasars (FSRQs), in the sense that the former objects are more variable. For both populations the variability index steadily increases with increasing frequency. The distribution of intensity variations also broadens with increasing frequency, and approaches a log-normal shape at the highest frequencies. We find that variability enhances by 20-30% the high frequency counts of extragalactic radio-sources at bright flux densities, such as those of the WMAP and Planck surveys.Comment: A&A accepted. 12 pages, 16 figure

    A historic jet-emission minimum reveals hidden spectral features in 3C 273

    Full text link
    Aims. The aim of this work is to identify and study spectral features in the quasar 3C 273 usually blended by its strong jet emission. Method. A historic minimum in the sub-millimetre emission of 3C 273 triggered coordinated multi-wavelength observations in June 2004. X-ray observations from the INTEGRAL, XMM-Newton and RXTE satellites are complemented by ground-based optical, infrared, millimetre and radio observations. The overall spectrum is used to model the infrared and X-ray spectral components. Results. Three thermal dust emission components are identified in the infrared. The dust emission on scales from 1 pc to several kpc is comparable to that of other quasars, as expected by AGN unification schemes. The observed weakness of the X-ray emission supports the hypothesis of a synchrotron self-Compton origin for the jet component. There is a clear soft-excess and we find evidence for a very broad iron line which could be emitted in a disk around a Kerr black hole. Other signatures of a Seyfert-like X-ray component are not detected.Comment: 4 pages. Accepted for publication in A&A Letter

    Thermal inactivation of non-proteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products.

    Get PDF
    Thermal inactivation of nonproteolytic Clostridium botulinum type E spores was investigated in rainbow trout and whitefish media at 75 to 93°C. Lysozyme was applied in the recovery of spores, yielding biphasic thermal destruction curves. Approximately 0.1% of the spores were permeable to lysozyme, showing an increased measured heat resistance. Decimal reduction times for the heat-resistant spore fraction in rainbow trout medium were 255, 98, and 4.2 min at 75, 85, and 93°C, respectively, and those in whitefish medium were 55 and 7.1 min at 81 and 90°C, respectively. The z values were 10.4°C in trout medium and 10.1°C in whitefish medium. Commercial hot-smoking processes employed in five Finnish fish-smoking companies provided reduction in the numbers of spores of nonproteolytic C. botulinum of less than 103. An inoculated-pack study revealed that a time-temperature combination of 42 min at 85°C (fish surface temperature) with >70% relative humidity (RH) prevented growth from 106 spores in vacuum-packaged hot-smoked rainbow trout fillets and whole whitefish stored for 5 weeks at 8°C. In Finland it is recommended that hot-smoked fish be stored at or below 3°C, further extending product safety. However, heating whitefish for 44 min at 85°C with 10% RH resulted in growth and toxicity in 5 weeks at 8°C. Moist heat thus enhanced spore thermal inactivation and is essential to an effective process. The sensory qualities of safely processed and more lightly processed whitefish were similar, while differences between the sensory qualities of safely processed and lightly processes rainbow trout were observed

    Locating the γ-ray emission site in Fermi/LAT blazars – II. Multifrequency correlations

    Get PDF
    In an attempt to constrain and understand the emission mechanism of Îł-rays, we perform a cross-correlation analysis of 15 blazars using light curves in millimetre, optical and Îł-rays. We use discrete correlation function and consider only correlations significant at the 99 per cent level. A strong correlation was found between 37 and 95 GHz with a near-zero time delay in most of the sources, and ∌1 month or longer in the rest. A similar result was obtained between the optical and Îł-ray bands. Of the 15 sources, less than 50 per cent showed a strong correlation between the millimetre and Îł-ray or millimetre and optical bands. The primary reason for the lack of statistically significant correlation is the absence of a major outburst in the millimetre bands of most of the sources during the 2.5 yr time period investigated in our study. This may indicate that only the long-term variations or large flares are correlated between these bands. The variability of the sources at every waveband was also inspected using fractional rms variability (F_(var)). The F_(var) displays an increase with frequency reaching its maximum in the Îł-rays

    Long-term Swift and Mets\"ahovi monitoring of SDSS J164100.10+345452.7 reveals multi-wavelength correlated variability

    Full text link
    We report on the first multi-wavelength Swift monitoring campaign performed on SDSS J164100.10+345452.7, a nearby narrow-line Seyfert 1 galaxy formerly known as radio quiet which was recently detected both in the radio (at 37 GHz) and in the Îł\gamma-rays, which hints at the presence of a relativistic jet. During our 20-month Swift campaign, while pursuing the primary goal of assessing the baseline optical/UV and X-ray properties of J1641, we caught two radio flaring episodes, one each year. Our strictly simultaneous multi-wavelength data closely match the radio flare and allow us to unambiguously link the jetted radio emission of J1641. Indeed, for the X-ray spectra preceding and following the radio flare a simple absorbed power-law model is not an adequate description, and an extra absorption component is required. The average spectrum of J1641 can be best described by an absorbed power law model with a photon index Γ=1.93±0.12\Gamma=1.93\pm0.12, modified by a partially covering neutral absorber with a covering fraction f=0.91−0.03+0.02f=0.91_{-0.03}^{+0.02}. On the contrary, the X-ray spectrum closest to the radio flare does not require such extra absorber and is much harder (Γflare∌0.7±0.4\Gamma_{\rm flare} \sim 0.7\pm0.4), thus implying the emergence of a further, harder spectral component. We interpret this as the jet emission emerging from a gap in the absorber. The fractional variability we derive in the optical/UV and X-ray bands are found to be lower than the typical values reported in the literature, since our observations of J1641 are dominated by the source being in a low state. Under the assumption that the origin of the 37 GHz radio flare is the emergence of a jet from an obscuring screen also observed in the X-rays, the derived total jet power is Pjettot=3.5×1042P^{\rm tot}_{\rm jet}=3.5\times10^{42} erg s−1^{-1}, comparable to the lowest measured in the literature. [Abridged]Comment: Accepted for publication in Astronomy and Astrophysics (13 pages, 4 figures, 8 tables

    Testing the blazar spectral sequence: X-ray selected blazars

    Full text link
    We present simultaneous optical and X-ray data from Swift for a sample of FSRQs selected from the EMSS survey. We present also a complete analysis of Swift and INTEGRAL data on 4 blazars recently discussed as possibly challenging the trends of the "blazar spectral sequence". The SEDs of all these objects are modelled in terms of a general theoretical scheme leading to an estimate of the jets' physical parameters. Our results show that, in the case of the EMSS broad line blazars, X-ray selection does not lead to find sources with synchrotron peaks in the UV/X-ray range, as was the case for X-ray selected BL Lacs. Instead, for a wide range of radio powers all the sources with broad emission lines show similar SEDs, with synchrotron components peaking below the optical/UV range. Of the remaining 4 "anomalous" blazars, two highly luminous sources with broad lines, claimed to possibly emit synchrotron X-rays, are shown to be better described with IC models for their X-ray emission. For one source with weak emission lines (a BL Lac object) a synchrotron peak in the soft X-ray range is confirmed, while for the fourth source, exhibiting lines typical of NLSy1s, no evidence of X-ray emission from a relativistic jet is found. We reexamine the original "blazar spectral sequence" and suggest that the photon ambient, in which the particle acceleration and emission occur, is likely the main factor determining the shape of the blazar SED.Comment: 11 figures and 6 tables. Accepted for publication in MNRA
    • 

    corecore