9 research outputs found

    Changing climatic sensitivity and effects of drought frequency on the radial growth of Fagus sylvatica at the xeric frontiers of Central Europe

    Get PDF
    The influence of climate on the vitality and growth of European beech (Fagus sylvatica L.) has become a focus of forest research over the last decade. Beech locally reaches its continental xeric limit in Hungary within its European distribution area, giving a unique opportunity to study the climatic sensitivity of the species, based on tree-ring analysis. A comparison of four geographically and climatically different sites is presented from Hungary, combining data collected on stand level with systematic forest inventory plots. Tree-ring width chronologies covering the past 90–100 years of the lifetime of mature and middle-aged trees and different climatic variables were used to evaluate the growth-climate relationships and recent growth trends of the selected beech stands by multivariate regression analysis. Strong relationships were found between annual radial growth and (mainly water availability related) meteorological variables of the vegetation season, exceeding previous results from elsewhere in Europe. A clear spatiotemporal variability of the growth sensitivity was also revealed, following a (climatic) gradient from the northern to the southwestern parts of the country. In the northern sites, climatic sensitivity was found to be more fluctuating, while southwestern sites facing more continuous effects of changing climatic conditions seem to show weakening correlation over time. Trends of relative basal area increments and climatic sensitivity of growth over the past decades may be due to unfavorable climatic changes, though extreme and recurrent drought events superimposed on the long-term trends seem to have a decisive impact on growth patterns and associated resilience of beech

    Harmonised projections of future forest resources in Europe

    Get PDF
    Data PaperAbstract • Key message A dataset of forest resource projections in 23 European countries to 2040 has been prepared for fores trelated policy analysis and decision-making. Due to applying harmonised definitions, while maintaining country-specific forestry practices, the projections should be usable from national to international levels. The dataset can be accessed at https://doi.org/10.5061/dryad.4t880qh. The associated metadata are available at https://metadata-afs.nancy.inra.fr/ geonetwork/srv/eng/catalog.search#/metadata/8f93e0d6-b524-43bd-bdb8-621ad5ae6fa9info:eu-repo/semantics/publishedVersio

    The Role of Tree Mortality in Vitality Assessment of Sessile Oak Forests

    Get PDF
    Background and Purpose: The drought-induced vitality loss of sessile oak (Quercus petraea (Matt.) Liebl.) has been continuously observed in Hungary for more than three decades. The decrease in stand density as a consequence of drought-induced mortality has not been taken into consideration in most of the monitoring methods. Materials and Methods: Forest stands without any forest intervention during the last 30 years were selected. Quadrats were designated for the analysis in 18 sessile oak stands along a climatic transect in which foliage transparency and stand density were measured. Drought stress was defined by the water balance approach. By combining the foliage transparency and the relative stand density, a new cumulative assessment method of stand level vitality was introduced to get a more realistic picture about the effects of long-term drought (lasting for several decades) on the sessile oak forests in South-East Europe. Results: The calculated health status (100% - vital; 0% - dead) of the sessile oak stands was between 70-90% in the moist South-West Hungary and below 50% close to its xeric limit. The individual tree-based vitality assessment method gave considerably higher values on 17 out of 18 sites. Conclusions: Forest monitoring should also consider stand level-based tree mortality in oak forests while assessing health condition especially close to its xeric limit. The proposed new method provides a more realistic picture about the effects of climate change on sessile oak stands particularly for forest managers interested in changing in the wood stock of forests

    Growing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation

    Get PDF
    Wood resources have been essential for human welfare throughout history. Also nowadays, the volume of growing stock (GS) is considered one of the most important forest attributes monitored by National Forest Inventories (NFIs) to inform policy decisions and forest management planning. The origins of forest inventories closely relate to times of early wood shortage in Europe causing the need to explore and plan the utilisation of GS in the catchment areas of mines, saltworks and settlements. Over time, forest surveys became more detailed and their scope turned to larger areas, although they were still conceived as stand-wise inventories. In the 1920s, the first sample-based NFIs were introduced in the northern European countries. Since the earliest beginnings, GS monitoring approaches have considerably evolved. Current NFI methods differ due to country-specific conditions, inventory traditions, and information needs. Consequently, GS estimates were lacking international comparability and were therefore subject to recent harmonisation efforts to meet the increasing demand for consistent forest resource information at European level. As primary large-area monitoring programmes in most European countries, NFIs assess a multitude of variables, describing various aspects of sustainable forest management, including for example wood supply, carbon sequestration, and biodiversity. Many of these contemporary subject matters involve considerations about GS and its changes, at different geographic levels and time frames from past to future developments according to scenario simulations. Due to its historical, continued and currently increasing importance, we provide an up-to-date review focussing on large-area GS monitoring where we i) describe the origins and historical development of European NFIs, ii) address the terminology and present GS definitions of NFIs, iii) summarise the current methods of 23 European NFIs including sampling methods, tree measurements, volume models, estimators, uncertainty components, and the use of air- and space-borne data sources, iv) present the recent progress in NFI harmonisation in Europe, and v) provide an outlook under changing climate and forest-based bioeconomy objectives.publishedVersio

    Growing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation

    Get PDF
    Wood resources have been essential for human welfare throughout history. Also nowadays, the volume of growing stock (GS) is considered one of the most important forest attributes monitored by National Forest Inventories (NFIs) to inform policy decisions and forest management planning. The origins of forest inventories closely relate to times of early wood shortage in Europe causing the need to explore and plan the utilisation of GS in the catchment areas of mines, saltworks and settlements. Over time, forest surveys became more detailed and their scope turned to larger areas, although they were still conceived as stand-wise inventories. In the 1920s, the first sample-based NFIs were introduced in the northern European countries. Since the earliest beginnings, GS monitoring approaches have considerably evolved. Current NFI methods differ due to country-specific conditions, inventory traditions, and information needs. Consequently, GS estimates were lacking international comparability and were therefore subject to recent harmonisation efforts to meet the increasing demand for consistent forest resource information at European level. As primary large-area monitoring programmes in most European countries, NFIs assess a multitude of variables, describing various aspects of sustainable forest management, including for example wood supply, carbon sequestration, and biodiversity. Many of these contemporary subject matters involve considerations about GS and its changes, at different geographic levels and time frames from past to future developments according to scenario simulations. Due to its historical, continued and currently increasing importance, we provide an up-to-date review focussing on large-area GS monitoring where we i) describe the origins and historical development of European NFIs, ii) address the terminology and present GS definitions of NFIs, iii) summarise the current methods of 23 European NFIs including sampling methods, tree measurements, volume models, estimators, uncertainty components, and the use of air- and space-borne data sources, iv) present the recent progress in NFI harmonisation in Europe, and v) provide an outlook under changing climate and forest-based bioeconomy objectives.publishedVersio

    Growing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation

    No full text
    Wood resources have been essential for human welfare throughout history. Also nowadays, the volume of growing stock (GS) is considered one of the most important forest attributes monitored by National Forest Inventories (NFIs) to inform policy decisions and forest management planning. The origins of forest inventories closely relate to times of early wood shortage in Europe causing the need to explore and plan the utilisation of GS in the catchment areas of mines, saltworks and settlements. Over time, forest surveys became more detailed and their scope turned to larger areas, although they were still conceived as stand-wise inventories. In the 1920s, the first sample-based NFIs were introduced in the northern European countries. Since the earliest beginnings, GS monitoring approaches have considerably evolved. Current NFI methods differ due to country-specific conditions, inventory traditions, and information needs. Consequently, GS estimates were lacking international comparability and were therefore subject to recent harmonisation efforts to meet the increasing demand for consistent forest resource information at European level. As primary large-area monitoring programmes in most European countries, NFIs assess a multitude of variables, describing various aspects of sustainable forest management, including for example wood supply, carbon sequestration, and biodiversity. Many of these contemporary subject matters involve considerations about GS and its changes, at different geographic levels and time frames from past to future developments according to scenario simulations. Due to its historical, continued and currently increasing importance, we provide an up-to-date review focussing on large-area GS monitoring where we i) describe the origins and historical development of European NFIs, ii) address the terminology and present GS definitions of NFIs, iii) summarise the current methods of 23 European NFIs including sampling methods, tree measurements, volume models, estimators, uncertainty components, and the use of air- and space-borne data sources, iv) present the recent progress in NFI harmonisation in Europe, and v) provide an outlook under changing climate and forest-based bioeconomy objectives

    Harmonised projections of future forest resources in Europe

    No full text
    • Key message A dataset of forest resource projections in 23 European countries to 2040 has been prepared for forest-related policy analysis and decision-making. Due to applying harmonised definitions, while maintaining country-specific forestry practices, the projections should be usable from national to international levels. The dataset can be accessed at https://doi.org/10.5061/dryad.4t880qh . The associated metadata are available at https://metadata-afs.nancy.inra.fr/geonetwork/srv/eng/catalog.search#/metadata/8f93e0d6-b524-43bd-bdb8-621ad5ae6fa9
    corecore