596 research outputs found

    Stacking Sequence Effect on the Fracture Behavior of Narrow L-Shaped Cross-Ply Laminates: Experimental Study

    No full text
    The stacking sequence effect of narrow L-shaped laminates on the fracture mode was studied.Изучено влияние последовательности упаковки узкого уголка из ламинатов на характер его разрушения

    Automatic Path Planning for Unmanned Ground Vehicle Using UAV Imagery

    Get PDF
    Field machines play an important role in the management of agricultural environments. Increasing use of automated machines in precision agriculture has gained significant attention of farmers and industries to minimize human work load to perform tasks such as land preparation, seeding, fertilizing, plant health monitoring and harvesting. Path planning is considered as a fundamental step for agricultural machines equipped with autonomous navigation system. For mountain vineyards, path planning is a big challenge due to terrain morphology and unstructured vineyards. This paper proposes a workflow to generate an automatic coverage path plan for unmanned ground vehicles (UGVs) using georeferenced imagery taken by an unmanned aerial vehicle (UAV). First, image acquisition is performed over a vineyard to generate an orthomosaic and a digital surface model, which are then used to identify the vine rows and inter-row terrain. This information is then used by the algorithm to generate a path plan for UGV

    Quantum control of 88^{88}Sr+^+ in a miniature linear Paul trap

    Full text link
    We report on the construction and characterization of an apparatus for quantum information experiments using 88^{88}Sr+^+ ions. A miniature linear radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1 MHz in all directions are obtained with 50 V on the trap end-caps and less than 1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the S1/2S_{1/2} electronic ground-state of the ion. We constructed all the necessary laser sources for laser cooling and full coherent manipulation of the ions' external and internal states. Oscillating magnetic fields are used for coherent spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are demonstrated. Following resolved sideband cooling the average axial vibrational quanta of a single trapped ion is nˉ=0.05\bar n=0.05 and a heating rate of nˉ˙=0.016\dot{\bar n}=0.016 ms1^{-1} is measured.Comment: 8 pages,9 figure

    Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

    Full text link
    We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where planar ion traps promise novel physics: Spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudinal direction that have been previously investigated. With a chip device and a magnetic field coil with small inductance, a resonant enhancement of magnetic spin forces through the application of alternating magnetic field gradients is proposed. Such resonantly enhanced spin-spin coupling may be used, for instance, to create Schr\"odinger cat states. Finally we investigate magnetic gradient interactions in two-dimensional ion crystals, and discuss frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure

    The origin of fracture in the I-ECAP of AZ31B magnesium alloy

    Get PDF
    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener–Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C

    MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented

    Production of Single W Bosons at \sqrt{s}=189 GeV and Measurement of WWgamma Gauge Couplings

    Full text link
    Single W boson production in electron-positron collisions is studied with the L3 detector at LEP. The data sample collected at a centre-of-mass energy of \sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1. Events with a single energetic lepton or two acoplanar hadronic jets are selected. Within phase-space cuts, the total cross-section is measured to be 0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation. Including our single W boson results obtained at lower \sqrt{s}, the WWgamma gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma = 0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13

    Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP

    Get PDF
    The process e+e- -> W+W-gamma is analysed using the data collected with the L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W- candidates containing an isolated hard photon, the W+W-gamma cross section, defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80 +/- 16 fb, consistent with the Standard Model expectation. Including the process e+e- -> nu nu gamma gamma, limits are derived on anomalous contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 < a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2

    Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV

    Full text link
    A search for a Higgs boson decaying into invisible particles is performed using the data collected at LEP by the L3 experiment at centre-of-mass energies of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1 and 176.4 pb^-1. The observed candidates are consistent with the expectations from Standard Model processes. In the hypothesis that the production cross section of this Higgs boson equals the Standard Model one and the branching ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set at 95% confidence level

    Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at \sqrt{s} = 189 GeV

    Full text link
    A search for the lightest neutral scalar and neutral pseudoscalar Higgs bosons in the Minimal Supersymmetric Standard Model is performed using 176.4 pb^-1 of integrated luminosity collected by L3 at a center-of-mass energy of 189 GeV. No signal is observed, and the data are consistent with the expected Standard Model background. Lower limits on the masses of the lightest neutral scalar and pseudoscalar Higgs bosons are given as a function of tan(beta). Lower mass limits for tan(beta)>1 are set at the 95% confidence level to be m_h > 77.1 GeV and m_A > 77.1 GeV
    corecore