33 research outputs found

    GSK-3\u3b2-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions

    Get PDF
    Glycogen synthase kinase-3\u3b2 (GSK-3\u3b2) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3\u3b2 expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3\u3b2 were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3\u3b2 mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3\u3b2-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3\u3b2-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3\u3b2 in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3\u3b2 in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3\u3b2 as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD

    The regulation and deregulation of Wnt signaling by PARK genes in health and disease

    Get PDF
    Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general

    Integrated evaluation of indoor particulate exposure. The viepi project

    Get PDF
    Despite the progress made in recent years, reliable modeling of indoor air quality is still far from being obtained. This requires better chemical characterization of the pollutants and airflow physics included in forecasting tools, for which field observations conducted simultaneously indoors and outdoors are essential. The project “Integrated Evaluation of Indoor Particulate Exposure” (VIEPI) aimed at evaluating indoor air quality and exposure to particulate matter (PM) of humans in workplaces. VIEPI ran from February 2016 to December 2019 and included both numerical simulations and field campaigns carried out in universities and research environments located in urban and non-urban sites in the metropolitan area of Rome (Italy). VIEPI focused on the role played by micrometeorology and indoor airflow characteristics in determining indoor PM concentration. Short-and long-term study periods captured diurnal, weekly, and seasonal variability of airflow and PM concentration. Chemical characterization of PM10, including the determination of elements, ions, elemental carbon, organic carbon, and bioaerosol, was also carried out. Large differences in the composition of PM10 were detected between inside and outside as well as between different periods of the day and year. Indoor PM composition was related to the presence of people, to the season, and to the ventilation regime

    Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis

    Get PDF
    Objective: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS). Methods: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18\u20134.74, p = 0.015) with increased risk of severe COVID-19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20\u201312.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses. Interpretation: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists. ANN NEUROL 2021;89:780\u2013789

    LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same

    Get PDF
    Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places

    Multiparametric approach as a tool for the evaluation of nanoparticles emissions from laser printers in the professional exposure assessment

    No full text
    Recently published studies focused on potential sources of indoor unintentionally formed nanoparticles (NPs), e.g. from combustion processes, have evidenced that laser printers and photocopiers release, during the heating in printing processes, substances that represent a human health hazard. Generally, the evaluation of occupational exposure to NPs in workplaces needs dimensional and chemical characterization. However, the main problem is linked to the choice of the appropriate sampling and dimensional separation techniques. Therefore, a convenient multiparametric approach to improve the knowledge on NPs exposure from laser printers is characterized by the contemporary use of different sampling, measuring and chemical analysis instrumentations. In the present work, as the study performed on a single predominant source allows to overcome the problems connected with the simultaneous contributions of different and time dependent sources, for the evaluation of professional exposure to NP preliminary results of emissions from isolated laser printers (different in brands and in toner‘s age), obtained by measures performed in an experimental box-chamber, are reported and discussed. In particular, in order to combine chemical and dimensional results, the experimental design has included: size-resolved characterization measurements (by a Fast Mobility Particle Sizer -FMPS) and the chemical characterization, obtained on size-segregated particles collected by multistage cascade impactor (NanoMoudi 122R), was performed by an Inductively Plasma Mass Spectrometer (ICP- MS) and a Gas-Chromatography Mass (GC-MS) respectively for the detection of metal ions (by which toners are charged) and Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs). Size segregated samples were also analysed by Scanning Electron Microscope (SEM) in order to correlate the obtained chemical results with morphological information (e.g. relating the formation of aggregates and/or agglomerates of NPs). Furthermore, fluctuations of ozone and VOCs concentrations inside the experimental box during the printing process, were detected by a photometric gas analyzer (Thermo Environmental Instrument 49C Ozone Analyzer) and a photoionization detector (PID) (MultiRae IR-Multi-GAS MONITOR PGM-54) respectively, whilst changes in temperature and humidity were checked by a microclimatic control instrumentation (BABUC). The standardisation of the multiparametric approach proposed can represent a valid support for the overall characterization of particles emitted from specific sources (such as laser printers) and for the arrangement of appropriate prevention and protection interventions which fulfill high standards of occupational health and safety of workers. Furthermore, the results obtained by the application of this approach can be considered a useful tool for the definition of Occupational Exposure Limit Values for NPs and, for this purpose, future efforts should be directed to study the complementary of different kinds of measurements

    Distortion product otoacoustic emission sensitivity to different solvents in a population of industrial painters

    No full text
    Objective: To evaluate the ototoxic effect of the exposure to different organic solvents and noise using distortion product otoacoustic emissions (DPOAEs).Design: The exposure to different solvents was evaluated by measuring, before and at the end of the work-shift, the urinary concentrations of solvent metabolites used as dose biomarkers. The urinary concentrations of DNA and RNA oxidation products were also measured as biomarkers of oxidative damage. The simultaneous exposure to noise was also evaluated. DPOAEs and pure tone audiometry (PTA) were used as outcome variables, and were correlated to the exposure variables using mixed effect linear regression models.Study sample: Seventeen industrial painters exposed to a solvent mixture in a naval industry. A sample size of 15 was estimated from previous studies as sufficient for discriminating small hearing level and DPOAE level differences (5 dB and 2 dB, respectively) at a 95% confidence level.Results: Statistically significant associations were found between the DPOAE level and the urinary dose biomarkers and the oxidative damage biomarkers. DPOAE level and the logarithm of the metabolite concentration showed a significant negative correlation.Conclusions: DPOAE are sensitive biomarkers of exposure to ototoxic substances and can be effectively used for the early detection of hearing dysfunction

    Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1)

    Get PDF
    Unconjugated bilirubin (UCB) causes encephalopathy in severely jaundiced neonates by damaging astrocytes and neurons. Astrocytes, which help defend the brain against cytotoxic insults, express the ATP-dependent transporter, multidrug resistance-associated protein 1 (Mrp1), which mediates export of organic anions, probably including UCB. We therefore studied whether exposure to UCB affects the expression and intracellular localization of Mrp1 in cultured mouse astroglial cells (>95% astrocytes). Mrp1 was localized and quantitated by confocal laser scanning microscopy and double immunofluorescence labeling by using specific antibodies against Mrp1 and the astrocyte marker glial fibrillary acidic protein, plus the Golgi marker wheat germ agglutinin (WGA). In unexposed astrocytes, Mrp1 colocalized with WGA in the Golgi apparatus. Exposure to UCB at a low unbound concentration (B(f))of 40 nM caused rapid redistribution of Mrp1 from the Golgi throughout the cytoplasm to the plasma membrane, with a peak 5-fold increase in Mrp1 immunofluorescence intensity from 30 to 120 min. B(f) above aqueous saturation produced a similar but aborted response. Exposure to this higher B(f) for 16 h markedly decreased Trypan blue exclusion and methylthiazoletetrazoilum activity and increased apoptosis 5-fold by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay. These toxic effects were modestly increased by inhibition of Mrp1 activity with 3-([3-(2-[7-chloro-2-quinolinyl]ethenyl)phenyl-(3-dimethylamino-3-oxopropyl)-thio-methyl]thio)propanoic acid (MK571). By contrast, B(f) = 40 nM caused injury only if Mrp1 activity was inhibited by MK571, which also blocked translocation of Mrp1. Our conclusion is that in astrocytes, UCB up-regulates expression of Mrp1 and promotes its trafficking from the Golgi to the plasma membrane, thus moderating cytotoxicity from UCB, presumably by limiting its intracellular accumulation
    corecore