10 research outputs found

    Dynamic localization of SPE-9 in sperm: a protein required for sperm-oocyte interactions in Caenorhabditis elegans

    Get PDF
    BACKGROUND: Fertilization in Caenorhabditis elegans requires functional SPE-9 protein in sperm. SPE-9 is a transmembrane protein with a predicted extracellular domain that contains ten epidermal growth factor (EGF)-like motifs. The presence of these EGF-like motifs suggests that SPE-9 is likely to function in gamete adhesive and/or ligand-receptor interactions. RESULTS: We obtained specific antisera directed against different regions of SPE-9 in order to determine its subcellular localization. SPE-9 is segregated to spermatids with a pattern that is consistent with localization to the plasma membrane. During spermiogenesis, SPE-9 becomes localized to spiky projections that coalesce to form a pseudopod. This leads to an accumulation of SPE-9 on the pseudopod of mature sperm. CONCLUSIONS: The wild type localization patterns of SPE-9 provide further evidence that like the sperm of other species, C. elegans sperm have molecularly mosaic and dynamic regions. SPE-9 is redistributed by what is likely to be a novel mechanism that is very fast (~5 minutes) and is coincident with dramatic rearrangements in the major sperm protein cytoskeleton. We conclude that SPE-9 ends up in a location on mature sperm where it can function during fertilization and this localization defines the sperm region required for these interactions

    The CIL-1 PI 5-Phosphatase Localizes TRP Polycystins to Cilia and Activates Sperm in C. elegans

    Get PDF
    SummaryBackgroundC. elegans male sexual behaviors include chemotaxis and response to hermaphrodites, backing, turning, vulva location, spicule insertion, and sperm transfer, culminating in cross-fertilization of hermaphrodite oocytes with male sperm. The LOV-1 and PKD-2 transient receptor potential polycystin (TRPP) complex localizes to ciliated endings of C. elegans male-specific sensory neurons and mediates several aspects of male mating behavior. TRPP complex ciliary localization and sensory function are evolutionarily conserved. A genetic screen for C. elegans mutants with PKD-2 ciliary localization (Cil) defects led to the isolation of a mutation in the cil-1 gene.ResultsHere, we report that a phosphoinositide (PI) 5-phosphatase, CIL-1, regulates TRPP complex ciliary receptor localization and sperm activation. cil-1 does not regulate the localization of other ciliary proteins, including intraflagellar transport (IFT) components, sensory receptors, or other TRP channels in different cell types. Rather, cil-1 specifically controls TRPP complex trafficking in male-specific sensory neurons and does so in a cell-autonomous fashion. In these cells, cil-1 is required for normal PI(3)P distribution, indicating that a balance between PI(3,5)P2 and PI(3)P is important for TRPP localization. cil-1 mutants are infertile because of sperm activation and motility defects. In sperm, the CIL-1 5-phosphatase and a wortmannin-sensitive PI 3-kinase act antagonistically to regulate the conversion of sessile spermatids into motile spermatozoa, implicating PI(3,4,5)P3 signaling in nematode sperm activation.ConclusionOur studies identify the CIL-1 5-phosphatase as a key regulator of PI metabolism in cell types that are important in several aspects of male reproductive biology

    spe-10 Encodes a DHHC–CRD Zinc-Finger Membrane Protein Required for Endoplasmic Reticulum/Golgi Membrane Morphogenesis During Caenorhabditis elegans Spermatogenesis

    No full text
    C. elegans spermatogenesis employs lysosome-related fibrous body–membranous organelles (FB–MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB–MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB–MO derivatives. In this article, we show that spe-10 encodes a four-pass integral membrane protein that has a DHHC–CRD zinc-finger motif. The DHHC–CRD motif is found in a large, diverse family of proteins that have been implicated in palmitoyl transfer during protein lipidation. Seven spe-10 mutants were analyzed, including missense, nonsense, and deletion mutants. An antiserum to SPE-10 showed significant colocalization with a known marker for the FB–MOs during wild-type spermatogenesis. In contrast, the spe-10(ok1149) deletion mutant lacked detectable SPE-10 staining; this mutant lacks a spe-10 promoter and most coding sequence. The spe-10(eb64) missense mutation, which changes a conserved residue within the DHHC–CRD domain in all homologues, behaves as a null mutant. These results suggest that wild-type SPE-10 is required for the MO to properly deliver the FB to the C. elegans spermatid and the DHHC–CRD domain is essential for this function

    Supplemental Material for Ratliff et al., 2018

    No full text
    Supplemental Figures S1-S5<br>Table S1: mib-1 mutations<br>Table S2: Primers Used for PCR and CRISPR Genome Engineering<br>Movies S1-S4<br

    SPE-39 Family Proteins Interact with the HOPS Complex and Function in Lysosomal Delivery

    No full text
    Yeast and animal homotypic fusion and vacuole protein sorting (HOPS) complexes contain conserved subunits, but HOPS-mediated traffic in animals might require additional proteins. Here, we demonstrate that SPE-39 homologues, which are found only in animals, are present in RAB5-, RAB7-, and RAB11-positive endosomes where they play a conserved role in lysosomal delivery and probably function via their interaction with the core HOPS complex. Although Caenorhabditis elegans spe-39 mutants were initially identified as having abnormal vesicular biogenesis during spermatogenesis, we show that these mutants also have disrupted processing of endocytosed proteins in oocytes and coelomocytes. C. elegans SPE-39 interacts in vitro with both VPS33A and VPS33B, whereas RNA interference of VPS33B causes spe-39–like spermatogenesis defects. The human SPE-39 orthologue C14orf133 also interacts with VPS33 homologues and both coimmunoprecipitates and cosediments with other HOPS subunits. SPE-39 knockdown in cultured human cells altered the morphology of syntaxin 7-, syntaxin 8-, and syntaxin 13-positive endosomes. These effects occurred concomitantly with delayed mannose 6-phosphate receptor-mediated cathepsin D delivery and degradation of internalized epidermal growth factor receptors. Our findings establish that SPE-39 proteins are a previously unrecognized regulator of lysosomal delivery and that C. elegans spermatogenesis is an experimental system useful for identifying conserved regulators of metazoan lysosomal biogenesis
    corecore