850 research outputs found
Unquenched orbital moment in the Mott insulating antiferromagnet KOsO4
Applying the correlated electronic structure method based on density
functional theory plus the Hubbard interaction, we have investigated the
tetragonal scheelite structure Mott insulator KOsO, whose
configuration should be affected only slightly by spin-orbit couping (SOC). The
method reproduces the observed antiferromagnetic Mott insulating state,
populating the Os majority orbital. The quarter-filled manifold
is characterized by a symmetry breaking due to the tetragonal structure, and
the Os ion shows a crystal field splitting = 1.7 eV from the
complex, which is relatively small considering the high formal
oxidation state Os. The small magnetocrystalline anisotropy before
including correlation (i.e., in the metallic state) is increased by more than
an order of magnitude in the Mott-insulating state, a result of a strong
interplay between large SOC and a strong correlation. In contrast to
conventional wisdom that the complex will not support orbital magnetism,
we find that for the easy axis [100] direction the substantial Os orbital
moment compensates half of the Os spin moment =
0.4. The origin of the orbital moment is analyzed and understood in
terms of additional spin-orbital lowering of symmetry, and beyond that due to
structural distortion, for magnetization along [100]. Further interpretation is
assisted by analysis of the spin density and the Wannier function with SOC
included.Comment: 7 page
Telomere shortening occurs in Asian Indian Type 2 diabetic patients
Aim: Telomere shortening has been reported in several diseases including atherosclerosis and Type 1 diabetes. Asian Indians have an increased predilection for Type 2 diabetes and premature coronary artery disease. The aim of this study was to determine whether telomeric shortening occurs in Asian Indian Type 2 diabetic patients.
Methods: Using Southern‐blot analysis we determined mean terminal restriction fragment (TRF) length, a measure of average telomere size, in leucocyte DNA. Type 2 diabetic patients without any diabetes‐related complications (n = 40) and age‐ and sex‐matched control non‐diabetic subjects (n = 40) were selected from the Chennai Urban Rural Epidemiology Study (CURES). Plasma level of malondialdehyde (MDA), a marker of lipid peroxidation, was measured by TBARS (thiobarbituric acid reactive substances) using a fluorescence method.
Results: Mean (± SE) TRF lengths of the Type 2 diabetic patients (6.01 ± 0.2 kb) were significantly shorter than those of the control subjects (9.11 ± 0.6 kb) (P = 0.0001). Among the biochemical parameters, only levels of TBARS showed a negative correlation with shortened telomeres in the diabetic subjects (r = −0.36; P = 0.02). However, telomere lengths were negatively correlated with insulin resistance (HOMA‐IR) (r = −0.4; P = 0.01) and age (r = −0.3; P = 0.058) and positively correlated with HDL levels (r = 0.4; P = 0.01) in the control subjects. Multiple linear regression (MLR) analysis revealed diabetes to be significantly (P < 0.0001) associated with shortening of TRF lengths.
Conclusions: Telomere shortening occurs in Asian Indian Type 2 diabetic patients
Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer
In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production
Angiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1 alpha. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized. Here, we identified sulfur amino acid restriction as a proangiogenic trigger, promoting increased VEGF expression, migration and sprouting in ECs in vitro, and increased capillary density in mouse skeletal muscle in vivo via the GCN2/ATF4 amino acid starvation response pathway independent of hypoxia or HIF1 alpha. We also identified a requirement for cystathionine-gamma-lyase in VEGF-dependent angiogenesis via increased hydrogen sulfide (H2S) production. H2S mediated its proangiogenic effects in part by inhibiting mitochondrial electron transport and oxidative phosphorylation, resulting in increased glucose uptake and glycolytic ATP production.11Ysciescopu
CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) in 2018
While primary percutaneous coronary intervention (PCI) has significantly contributed to improve the mortality in patients with ST segment elevation myocardial infarction even in cardiogenic shock, primary PCI is a standard of care in most of Japanese institutions. Whereas there are high numbers of available facilities providing primary PCI in Japan, there are no clear guidelines focusing on procedural aspect of the standardized care. Whilst updated guidelines for the management of acute myocardial infarction were recently published by European Society of Cardiology, the following major changes are indicated; (1) radial access and drug-eluting stent over bare metal stent were recommended as Class I indication, and (2) complete revascularization before hospital discharge (either immediate or staged) is now considered as Class IIa recommendation. Although the primary PCI is consistently recommended in recent and previous guidelines, the device lag from Europe, the frequent usage of coronary imaging modalities in Japan, and the difference in available medical therapy or mechanical support may prevent direct application of European guidelines to Japanese population. The Task Force on Primary Percutaneous Coronary Intervention of the Japanese Association of Cardiovascular Intervention and Therapeutics (CVIT) has now proposed the expert consensus document for the management of acute myocardial infarction focusing on procedural aspect of primary PCI
Histone H2A Mono-Ubiquitination Is a Crucial Step to Mediate PRC1-Dependent Repression of Developmental Genes to Maintain ES Cell Identity
Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation
- …
