38 research outputs found

    Genetic diversity and population structure of Brachiaria brizantha (A.Rich.) Stapf accessions from Ethiopia

    Get PDF
    Brachiaria is a tropical, warm-season grass native to Africa. It is an extensively cultivated forage in the tropics with proven benefits on livestock productivity. Brachiaria is well-known for high biomass production, animal nutrition, carbon sequestration, biological nitrification inhibition, soil conservation, and adaptation to drought and low fertility soils. However, the use of Brachiaria grass for fodder production in Africa has been little explored largely due to lack of cultivars suitable to different production environments. The exploration and use of natural diversity is fundamental for an efficient Brachiaria breeding program. We analysed genetic diversity and population structure of 112 Ethiopian Brachiaria brizantha accessions using 23 microsatellite markers. A total of 459 alleles were detected with an average polymorphic information content of 0.75 suggesting high discriminating ability of these markers. The molecular variance analysis showed a high contribution (86%) of within-cluster differences to the total variation. Three allelic pools revealed by STRUCTURE analysis in 112 accessions were in agreement with the clustering patterns seen in neighbor-joining tree and principal coordinates analyses. A core collection of 39 B. brizantha accessions was constituted. This study concludes a high genetic diversity of Ethiopian B. brizantha accessions and their importance in Brachiaria breeding programs.Keywords: accessions, Brachiaria brizantha, core collection, genetic diversity, population structur

    Morphological and molecular identification of pathogenic fungi of Monodora myristica Dunal kernels and their response to different phytoextracts

    Get PDF
    Identification of fungi from calabash nutmeg kernels was based on their morphological characteristics and analysis of the internal transcribed spacer (ITS) sequences of their genomic DNA. Antifungal activity of aqueous,methanolic and ethanolic extracts of four plants species (Azadirachta indica, Citrus sinensis, Moringa oleifera and Tithonia diversifolia) was tested in vitro at 50, 75, 100 and 125 mg/ml for aqueous extracts and 40, 60, 80 and 100 mg/ml for methanolic and ethanolic extracts. Mancozeb (1 mg/ml) and distilled water were used as positive and negative controls, respectively. The most frequently isolated fungi were Cercospora purpurea (34.28%), Fusarium oxysporum (23.81%) and Aspergillus flavus (17.14%). C. purpurea and F. oxysporum isolates were more aggressive after inoculation on healthy kernels. All the extracts tested, inhibited the growth of the fungi compared to the negative control, except the aqueous extract of T. diversifolia against C. purpurea and F. oxysporum and the methanolic extract of M. oleifera against F. oxysporum at 75 mg/ml. The efficiency of aqueous extracts of M. oleifera and C. sinensis was significantly lower (P<0.05) as compared to the reference fungicide on growth of A. niger at 125 mg/ml. Antifungal activity of methanolic extracts of A. indica, C. sinensis and T. diversifolia as well as ethanolic extracts of A. indica and M. oleifera was significantly equal to mancozeb at 100 mg/ml on A. flavus. Aqueous extracts of M. oleifera and methanolic extracts of A. indica and C. sinensis could be used for protection of Monodora myristica kernels against post-harvest fungi

    Genetic diversity, population structure and kinship relationships highlight the environmental influence on Uganda’s indigenous goat populations

    Get PDF
    This research article was published by Trontiers,2024Knowledge about genetic diversity and population structure among goat populations is essential for understanding environmental adaptation and fostering efficient utilization, development, and conservation of goat breeds. Uganda’s indigenous goats exist in three phenotypic groups: Mubende, Kigezi, and Small East African. However, a limited understanding of their genetic attributes and population structure hinders the development and sustainable utilization of the goats. Using the Goat Illumina 60k chip International Goat Genome Consortium V2, the whole-genome data for 1,021 indigenous goats sourced from 10 agroecological zones in Uganda were analyzed for genetic diversity and population structure. A total of 49,337 (82.6%) single-nucleotide polymorphism markers were aligned to the ARS-1 goat genome and used to assess the genetic diversity, population structure, and kinship relationships of Uganda’s indigenous goats. Moderate genetic diversity was observed. The observed and expected heterozygosities were 0.378 and 0.383, the average genetic distance was 0.390, and the average minor allele frequency was 0.30. The average inbreeding coefficient (Fis) was 0.014, and the average fixation index (Fst) was 0.016. Principal component analysis, admixture analysis, and discriminant analysis of principal components grouped the 1,021 goat genotypes into three genetically distinct populations that did not conform to the known phenotypic populations but varied across environmental conditions. Population 1, comprising Mubende (90%) and Kigezi (8.1%) goats, is located in southwest and central Uganda, a warm and humid environment. Population 2, which is 59% Mubende and 49% Small East African goats, is located along the Nile Delta in northwestern Uganda and around the Albertine region, a hot and humid savannah grassland. Population 3, comprising 78.4% Small East African and 21.1% Mubende goats, is found in northeastern to eastern Uganda, a hot and dry Commiphora woodlands. Genetic diversity and population structure information from this study will be a basis for future development, conservation, and sustainable utilization of Uganda’s goat genetic resources

    Molecular genetic diversity and population structure of Ethiopian white lupin landraces: Implications for breeding and conservation

    No full text
    White lupin is one of the four economically important species of the Lupinus genus and is an important grain legume in the Ethiopian farming system. However, there has been limited research effort to characterize the Ethiopian white lupin landraces. Fifteen polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 212 Ethiopian white lupin (Lupinus albus) landraces and two genotypes from different species (Lupinus angustifolius and Lupinus mutabilis) were used as out-group. The SSR markers revealed 108 different alleles, 98 of them from 212 landraces and 10 from out-group genotypes, with an average of 6.5 alleles per locus. The average gene diversity was 0.31. Twenty eight landraces harbored one or more private alleles from the total of 28 private alleles identified in the 212 white lupin accessions. Seventy-seven rare alleles with a frequency of less than 5% were identified and accounted for 78.6% of the total alleles detected. Analysis of molecular variance (AMOVA) showed that 92% of allelic diversity was attributed to individual accessions within populations while only 8% was distributed among populations. At 70% similarity level, the UPGMA dendrogram resulted in the formation of 13 clusters comprised of 2 to 136 landraces, with the out-group genotypes and five landraces remaining distinct and ungrouped. Population differentiation and genetic distance were relatively high between Gondar and Ethiopian white lupin populations collected by Australians. A model-based population structure analysis divided the white lupin landraces into two populations. All Ethiopian white lupin landrace populations, except most of the landraces collected by Australians (77%) and about 44% from Awi, were grouped together with significant admixtures. The study also suggested that 34 accessions, as core collections, were sufficient to retain 100% of SSR diversity. These accessions (core G-34) represent 16% of the whole 212 Ethiopian white lupin accessions and populations from West Gojam, Awi and Australian collections contributed more accessions to the core collection

    Development of microsatellite markers and analysis of genetic diversity and population structure of Colletotrichum gloeosporioides from Ethiopia

    No full text
    Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia

    Integrating phenotypic evaluations with a molecular diversity assessment of an Ethiopian collection of common bean landraces

    Get PDF
    Understanding the organisation of genetic diversity in a crop species is a key element for both the conservation and utilisation of its genetic resources. In the case of common bean (Phaseolus vulgaris L.), Ethiopia is one of the secondary centers of diversity of this species. Hence, this study sought to improve our understanding of genetic diversity of common bean by integrating morphological and agronomic evaluations with prior molecular diversity data from a collection of landrace accessions from different common bean growing regions of Ethiopia. The samples studied included 115 landraces, four standard varieties, and two control genotypes. Twenty agronomic traits and morphological descriptors were used to evaluate the accessions under field conditions. A Principal Component Analysis clearly separated the accessions into the Andean and Mesoamerican gene pools, with the first two axes explaining most of the variation. Step-wise discriminant and canonical correlation analyses, with all variables or only the morphological variables, enabled the identification of characters distinguishing accessions from the Andean/Mesoamerican gene pools, and their respective ecogeographic races. Data distinguishing racial and morphological traits were used to clarify the identities of five cluster groups, identified at STRUCTURE preset K = 5, in a preceding study. The three Andean cluster groups were shown to belong to two of the races in the gene pool, ‘Nueva Granada’ and ‘Peru’; while the two Mesoamerican groups were from the race ‘Mesoamerica’. By integrating the morphological and agronomic evaluation of an Ethiopian germplasm collection of common bean, initially performed just based on molecular characterisation, we were able to improve our understanding of the organisation of this diversity. Our results suggest extensive hybridisation between the Andean and Mesoamerican gene pools after introduction of common bean germplasm in Ethiopia

    Genome-wide insights of Ethiopian indigenous sheep populations reveal the population structure related to tail morphology and phylogeography

    Get PDF
    Background Ethiopian sheep living in different climatic zones and having contrasting morphologies are a most promising subject of molecular-genetic research. Elucidating their genetic diversity and genetic structure is critical for designing appropriate breeding and conservation strategies. Objective The study was aimed to investigate genome-wide genetic diversity and population structure of eight Ethiopian sheep populations. Methods A total of 115 blood samples were collected from four Ethiopian sheep populations that include Washera, Farta and Wollo (short fat-tailed) and Horro (long fat-tailed). DNA was extracted using Quick-DNA (TM) Miniprep plus kit. All DNA samples were genotyped using Ovine 50 K SNP BeadChip. To infer genetic relationships of Ethiopian sheep at national, continental and global levels, genotype data on four Ethiopian sheep (Adilo, Arsi-Bale, Menz and Black Head Somali) and sheep from east, north, and south Africa, Middle East and Asia were included in the study as reference. Results Mean genetic diversity of Ethiopian sheep populations ranged from 0.352 +/- 0.14 for Horro to 0.379 +/- 0.14 for Arsi-Bale sheep. Population structure and principal component analyses of the eight Ethiopian indigenous sheep revealed four distinct genetic cluster groups according to their tail phenotype and geographical distribution. The short fat-tailed sheep did not represent one genetic cluster group. Ethiopian fat-rump sheep share a common genetic background with the Kenyan fat-tailed sheep. Conclusion The results of the present study revealed the principal component and population structure follows a clear pattern of tail morphology and phylogeography. There is clear signature of admixture among the study Ethiopian sheep population

    Development of Microsatellite Markers and Analysis of Genetic Diversity and Population Structure of Colletotrichum gloeosporioides from Ethiopia.

    No full text
    Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia
    corecore