11 research outputs found
Recommended from our members
Left atrial volume during the early convalescent phase of acute MI is strongly related to expansion of myocardial extracellular matrix during infarct healing and ventricular remodeling
Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: the multi-ethnic study of atherosclerosis
ObjectivesThis study assessed whether impaired fasting glucose (IFG), insulin resistance, and waist-to-hip ratio (WHR) had effects on cardiac remodeling, independent of obesity, in the MESA (Multi-Ethnic Study of Atherosclerosis) trial.BackgroundRecent studies have suggested that central obesity and insulin resistance may be primary mediators of obesity-related cardiac remodeling independent of body mass index (BMI).MethodsWe investigated 4,364 subjects without diabetes in the MESA trial. IFG (100 to 125 mg/dl) or insulin resistance (by homeostatic model assessment of insulin resistance [HOMA-IR]) and WHR were used for cardiometabolic phenotyping. Multivariate linear regression analysis was used to determine the effects of the cardiometabolic markers on left ventricular (LV) remodeling, assessed primarily through the LV mass-to-volume ratio obtained by cine cardiac magnetic resonance imaging.ResultsIndividuals with IFG were more likely to be older and hypertensive, with increased prevalence of cardiometabolic risk factors regardless of BMI. In each quartile of BMI, subjects with above-median HOMA-IR, above-median WHR, or IFG had a higher LV mass-to-volume ratio (p < 0.05 for all). HOMA-IR (p < 0.0001), WHR (p < 0.0001), and the presence of IFG (p = 0.04), but not BMI (p = 0.24), were independently associated with LV mass-to-volume ratio after adjustment for age, sex, hypertension, race, and dyslipidemia.ConclusionsInsulin resistance and WHR were associated with concentric LV remodeling independent of BMI. These results support the emerging hypothesis that the cardiometabolic phenotype, defined by insulin resistance and central obesity, may play a critical role in LV remodeling independently of BMI
Recommended from our members
Risk Stratification by Regadenoson Stress Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease
The aim of this study was to investigate the association between major adverse cardiovascular events (MACEs) and inducible ischemia on regadenoson cardiac magnetic resonance (CMR) myocardial perfusion imaging (MPI) performed at 3.0 T. Regadenoson stress CMR MPI is increasingly used to assess patients with suspected ischemia; however, its value in patient prognostication and risk reclassification is only emerging. A total of 346 patients with suspected ischemia who were referred for regadenoson CMR were studied. The prognostic association of presence of inducible ischemia by CMR with MACEs was determined. In addition, we assessed the extent of net reclassification improvement by CMR beyond a clinical risk model. There were 52 MACEs during a median follow-up period of 1.9 years. Patients with inducible ischemia were fourfold more likely to experience MACEs (hazard ratio, 4.14, 95% confidence interval 2.37 to 7.24, p 10%) by CMR was 0.29 (95% confidence interval 0.15 to 0.44), and continuous net reclassification improvement was 0.58. In conclusion, in patients with clinical suspicion of myocardial ischemia, regadenoson stress CMR MPI provides robust risk stratification. CMR MPI negative for ischemia was associated with a very low annual rate of hard cardiac events. In addition, CMR MPI provides effective risk reclassification in a substantial proportion of patients
Recommended from our members
Vasodilator Stress Perfusion CMR Imaging Is Feasible and Prognostic in Obese Patients
Objectives
This study sought to determine feasibility and prognostic performance of stress cardiac magnetic resonance (CMR) in obese patients (body mass index [BMI] ≥30 kg/m2).
Background
Current stress imaging methods remain limited in obese patients. Given the impact of the obesity epidemic on cardiovascular disease, alternative methods to effectively risk stratify obese patients are needed.
Methods
Consecutive patients with a BMI ≥30 kg/m2 referred for vasodilating stress CMR were followed for major adverse cardiovascular events (MACE), defined as cardiac death or nonfatal myocardial infarction. Univariable and multivariable Cox regressions for MACE were performed to determine the prognostic association of inducible ischemia or late gadolinium enhancement (LGE) by CMR beyond traditional clinical risk indexes.
Results
Of 285 obese patients, 272 (95%) completed the CMR protocol, and among these, 255 (94%) achieved diagnostic imaging quality. Mean BMI was 35.4 ± 4.8 kg/m2, with a maximum weight of 200 kg. Reasons for failure to complete CMR included claustrophobia (n = 4), intolerance to stress agent (n = 4), poor gating (n = 4), and declining participation (n = 1). Sedation was required in 19 patients (7%; 2 patients with intravenous sedation). Sixteen patients required scanning by a 70-cm-bore system (6%). Patients without inducible ischemia or LGE experienced a substantially lower annual rate of MACE (0.3% vs. 6.3% for those with ischemia and 6.7% for those with ischemia and LGE). Median follow-up of the cohort was 2.1 years. In a multivariable stepwise Cox regression including clinical characteristics and CMR indexes, inducible ischemia (hazard ratio 7.5; 95% confidence interval: 2.0 to 28.0; p = 0.002) remained independently associated with MACE. When patients with early coronary revascularization (within 90 days of CMR) were censored on the day of revascularization, both presence of inducible ischemia and ischemia extent per segment maintained a strong association with MACE.
Conclusions
Stress CMR is feasible and effective in prognosticating obese patients, with a very low negative event rate in patients without ischemia or infarction
Recommended from our members
Comparative Definitions for Moderate-Severe Ischemia in Stress Nuclear, Echocardiography, and Magnetic Resonance Imaging
The lack of standardized reporting of the magnitude of ischemia on noninvasive imaging contributes to variability in translating the severity of ischemia across stress imaging modalities. We identified the risk of coronary artery disease (CAD) death or myocardial infarction (MI) associated with ≥10% ischemic myocardium on stress nuclear imaging as the risk threshold for stress echocardiography and cardiac magnetic resonance. A narrative review revealed that ≥10% ischemic myocardium on stress nuclear imaging was associated with a median rate of CAD death or MI of 4.9%/year (interquartile range: 3.75% to 5.3%). For stress echocardiography, ≥3 newly dysfunctional segments portend a median rate of CAD death or MI of 4.5%/year (interquartile range: 3.8% to 5.9%). Although imprecisely delineated, moderate-severe ischemia on cardiac magnetic resonance may be indicated by ≥4 of 32 stress perfusion defects or ≥3 dobutamine-induced dysfunctional segments. Risk-based thresholds can define equivalent amounts of ischemia across the stress imaging modalities, which will help to translate a common understanding of patient risk on which to guide subsequent management decisions
Recommended from our members
Left Atrial Passive Emptying Function Determined by Cardiac Magnetic Resonance Predicts Atrial Fibrillation Recurrence After Pulmonary Vein Isolation
Background
While pulmonary vein isolation (PVI) has become a mainstream therapy for selected patients with atrial fibrillation (AF), late recurrent AF is common and its risk factors remain poorly defined. The purpose of our study was to test the hypothesis that reduced left atrial passive emptying function (LAPEF) as determined by cardiac magnetic resonance (CMR) has a strong association with late recurrent AF following PVI.
Methods and Results
346 AF patients referred for CMR PV mapping prior to PVI were included. Maximum LA volumes (VOLmax) and volumes before atrial contraction (VOLbac) were measured; LAPEF was calculated as (VOLmax − VOLbac)/VOLmax × 100. Kaplan-Meier curves were constructed to determine late recurrent AF stratified by LAPEF quintile. Cox proportional hazards regression was used to adjust for known markers of recurrence. Over a median follow-up of 27 months, 124 patients (35.8%) experienced late recurrent AF. Patients with recurrence were more likely to have non-paroxysmal AF (75.8% vs. 51.4%, P<0.01), higher mean VOLmax (60.2 ml/m2 vs. 52.8 ml/m2, P<0.01), and lower mean LAPEF (19.1% vs. 26.0%, P<0.01). Patients in the lowest LAPEF quintile were at highest risk of developing recurrent AF (two-year recurrence lowest vs. highest: 60.5% vs. 17.3%, P<0.01). After adjusting for known predictors of recurrence, patients with low LAPEF remained significantly more likely to recur (HR lowest vs. highest quintile = 3.92, 95% CI 2.01–7.65).
Conclusion
We found a strong association between LAPEF and recurrent AF after PVI that persisted after multivariable adjustment
Recommended from our members
Stress Cardiac Magnetic Resonance Imaging Provides Effective Cardiac Risk Reclassification in Patients With Known or Suspected Stable Coronary Artery Disease
Background
A recent large-scale clinical trial found that an initial invasive strategy does not improve cardiac outcomes beyond optimized medical therapy in patients with stable coronary artery disease (CAD). Novel methods to stratify at-risk patients may refine therapeutic decisions to improve outcomes.
Methods and Results
In a cohort of 815 consecutive patients referred for evaluation of myocardial ischemia, we determined the net reclassification improvement of the risk of cardiac death or nonfatal MI (MACE) incremental to clinical risk models, using guideline–based low (3%) annual risk categories. In the whole cohort, inducible ischemia demonstrated strong association with MACE (hazard ratio 14.66, P<0.0001) with low negative event rates of MACE and cardiac death (0.6% and 0.4%). This prognostic robustness maintained in patients with prior CAD (hazard ratio 8.17, P<0.0001, and 1.3% and 0.6%, respectively). Adding inducible ischemia to the multivariable clinical risk model (age and prior CAD adjusted) improved discrimination of MACE (C-statistic 0.81 to 0.86, P=0.04; Adjusted hazard ratio 7.37, P<0.0001) and reclassified 91.5% of patients at moderate pre-test risk (65.7% to low risk; 25.8% to high risk) with corresponding changes in the observed event rates (0.3%/year and 4.9%/year, for low and high risk post-test, respectively). Categorical net reclassification index was 0.229 (95% CI 0.063–0.391). Continuous NRI was 1.11 (95% CI 0.81–1.39).
Conclusions
Stress CMR effectively reclassifies patient risk beyond standard clinical variables, specifically in patients at moderate to high pre-test clinical risk and in patients with prior CAD
Recommended from our members
The Incidence, Pattern, and Prognostic Value of Left Ventricular Myocardial Scar by Late Gadolinium Enhancement in Patients With Atrial Fibrillation
Objectives
We aimed to identify the frequency, pattern, and prognostic significance of left ventricular (LV) late gadolinium enhancement (LGE) in patients with atrial fibrillation (AF).
Background
There are limited data on the presence, pattern, and prognostic significance of LV myocardial fibrosis in patients with AF. Late gadolinium enhancement during cardiac magnetic resonance (CMR) is a marker for myocardial fibrosis.
Methods
We studied a consecutive group of 664 patients without known prior myocardial infarction being referred for radiofrequency ablation of AF. CMR was requested to assess pulmonary venous anatomy.
Results
Overall, 73% were male, with an average age of 56 years, and an ejection fraction of 55±10%. Left ventricular LGE was found in 88 patients (13%). The endpoint was all-cause mortality, and in this cohort we observed 68 deaths over a median follow-up period of 42 months. On univariable analysis, age (HR 1.05, CI 1.03–1.08, LRχ2 15.2, p=0.0001), diabetes (HR 2.39, CI 1.41–4.09, LRχ210.3, p=0.001), a history of heart failure (HR 1.78, CI 1.09–2.91, LRχ2 5.37, p=0.02), left atrial dimension (HR 1.04, CI 1.01–1.08, LRχ2 6.47, p=0.01), presence of LGE (HR 5.08, CI 3.08–8.36, LRχ2 28.8, p<0.0001), and LGE extent (HR 1.15, CI 1.10–1.21, LRχ2 35.6, p<0.0001) provided the strongest association with mortality. The mortality rate was 8.1% per patient-years in patients with LGE vs. 2.3% patients without LGE. In the best overall multivariable model for mortality, age and the extent of LGE were independent predictors of mortality. Indeed, each 1% increase in LGE associated with a 15% increased risk of death.
Conclusions
In patients with AF, LV LGE is a frequent finding and is a powerful predictor of mortality
Recommended from our members
Lessons learned from MPI and physiologic testing in randomized trials of stable ischemic heart disease: COURAGE, BARI 2D, FAME, and ISCHEMIA
There is a preponderance of evidence that, in the setting of an acute coronary syndrome, an invasive approach using coronary revascularization has a morbidity and mortality benefit. However, recent stable ischemic heart disease (SIHD) randomized clinical trials testing whether the addition of coronary revascularization to guideline-directed medical therapy (GDMT) reduces death or major cardiovascular events have been negative. Based on the evidence from these trials, the primary role of GDMT as a front line medical management approach has been clearly defined in the recent SIHD clinical practice guideline; the role of prompt revascularization is less precisely defined. Based on data from observational studies, it has been hypothesized that there is a level of ischemia above which a revascularization strategy might result in benefit regarding cardiovascular events. However, eligibility for recent negative trials in SIHD has mandated at most minimal standards for ischemia. An ongoing randomized trial evaluating the effectiveness of randomization of patients to coronary angiography and revascularization as compared to no coronary angiography and GDMT in patients with moderate-severe ischemia will formally test this hypothesis. The current review will highlight the available evidence including a review of the published and ongoing SIHD trials
Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack:a pooled analysis of individual patient data from cohort studies
BACKGROUND
Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke.
METHODS
We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602.
FINDINGS
Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19-2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20-1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82-3·29) for intracranial haemorrhage and 1·23 (1·08-1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08-6·72] for intracranial haemorrhage vs 1·47 [1·19-1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36-9·05] vs 1·43 [1·07-1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69-15·81] vs 1·86 [1·23-1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48-84] per 1000 patient-years vs 27 intracranial haemorrhages [17-41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46-108] per 1000 patient-years vs 39 intracranial haemorrhages [21-67] per 1000 patient-years).
INTERPRETATION
In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden.
FUNDING
British Heart Foundation and UK Stroke Association