9 research outputs found

    Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: the multi-ethnic study of atherosclerosis

    Get PDF
    ObjectivesThis study assessed whether impaired fasting glucose (IFG), insulin resistance, and waist-to-hip ratio (WHR) had effects on cardiac remodeling, independent of obesity, in the MESA (Multi-Ethnic Study of Atherosclerosis) trial.BackgroundRecent studies have suggested that central obesity and insulin resistance may be primary mediators of obesity-related cardiac remodeling independent of body mass index (BMI).MethodsWe investigated 4,364 subjects without diabetes in the MESA trial. IFG (100 to 125 mg/dl) or insulin resistance (by homeostatic model assessment of insulin resistance [HOMA-IR]) and WHR were used for cardiometabolic phenotyping. Multivariate linear regression analysis was used to determine the effects of the cardiometabolic markers on left ventricular (LV) remodeling, assessed primarily through the LV mass-to-volume ratio obtained by cine cardiac magnetic resonance imaging.ResultsIndividuals with IFG were more likely to be older and hypertensive, with increased prevalence of cardiometabolic risk factors regardless of BMI. In each quartile of BMI, subjects with above-median HOMA-IR, above-median WHR, or IFG had a higher LV mass-to-volume ratio (p < 0.05 for all). HOMA-IR (p < 0.0001), WHR (p < 0.0001), and the presence of IFG (p = 0.04), but not BMI (p = 0.24), were independently associated with LV mass-to-volume ratio after adjustment for age, sex, hypertension, race, and dyslipidemia.ConclusionsInsulin resistance and WHR were associated with concentric LV remodeling independent of BMI. These results support the emerging hypothesis that the cardiometabolic phenotype, defined by insulin resistance and central obesity, may play a critical role in LV remodeling independently of BMI

    Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack:a pooled analysis of individual patient data from cohort studies

    Get PDF
    BACKGROUND Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. METHODS We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. FINDINGS Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19-2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20-1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82-3·29) for intracranial haemorrhage and 1·23 (1·08-1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08-6·72] for intracranial haemorrhage vs 1·47 [1·19-1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36-9·05] vs 1·43 [1·07-1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69-15·81] vs 1·86 [1·23-1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48-84] per 1000 patient-years vs 27 intracranial haemorrhages [17-41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46-108] per 1000 patient-years vs 39 intracranial haemorrhages [21-67] per 1000 patient-years). INTERPRETATION In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden. FUNDING British Heart Foundation and UK Stroke Association

    1997 Amerasia Journal

    No full text
    corecore