15,194 research outputs found

    Accurate angle-of-arrival measurement using particle swarm optimization

    Get PDF
    As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates

    The EEE-05 Challenge: A New Web Service Discovery and Composition Competition

    Get PDF
    With growing acceptance of service-oriented computing, an emerging area of research is the investigation of technologies that will enable the discovery and composition of web services. Using the same approach as the popular Trading Agent Competitions (TAC), the EEE-05 Web Services Challenge is the first event geared towards the management of web services. The competition solicits industry and academic researchers that develop software components and/or intelligent agents that have the ability to discover pertinent web services and also compose them to create higher-level capabilities. This paper describes the competition details for this first year and expectations for future events

    Micromechanical Modeling of High-Strain Thin-Ply Composites

    Get PDF
    This paper presents a micromechanical analysis for the elastic and viscoelastic behavior of high-strain thin-ply composites. The modeling approach is based on unit cell homogenization. The geometry of the internal weave architecture and ply configuration is characterized via micrographic analysis and explicitly modeled in the unit cell. The composites are modeled as Kirchhoff plates and the homogenization analysis computes the effective relaxation ABD matrix represented by Prony series using the elastic and viscoelastic properties of the constituent fiber and matrix. The formulation of the micromechanical model and numerical implementation d. Composite laminates with 3-ply and 4-ply configurations are studied

    Nonlinear Preconditioning: How to use a Nonlinear Schwarz Method to Precondition Newton's Method

    Get PDF
    For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposition methods can either be used directly as iterative solvers, or one can use them as preconditioners for Newton's method. For the concrete case of the parallel Schwarz method, we show that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all components directly defined by the iterative method. This has the advantage that RASPEN already converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially better preconditioner for Newton's method. The iterative construction also allows us to naturally define a coarse correction using the multigrid full approximation scheme, which leads to a convergent two level non-linear iterative domain decomposition method and a two level RASPEN non-linear preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a non-linear diffusion problem

    Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin-film with Patterned Nanostructures

    Full text link
    We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.Comment: To appear in Phys. Rev. Let

    The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    Full text link
    We developed a highly sensitive, reliable and portable automatic system (H3^{3}) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3^{3} is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25^{\circ}C) with radon concentration as low as 50 Bq/m3^{3}. This is achieved by using a large radon progeny collection chamber, semiconductor α\alpha-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013

    Low-Temperatures Vortex Dynamics in Twinned Superconductors

    Get PDF
    We discuss the low-temperature dynamics of magnetic flux lines in samples with a family of parallel twin planes. A current applied along the twin planes drives flux motion in the direction transverse to the planes and acts like an electric field applied to {\it one-dimensional} carriers in disordered semiconductors. As in flux arrays with columnar pins, there is a regime where the dynamics is dominated by superkink excitations that correspond to Mott variable range hopping (VRH) of carriers. In one dimension, however, rare events, such as large regions void of twin planes, can impede VRH and dominate transport in samples that are sufficiently long in the direction of flux motion. In short samples rare regions can be responsible for mesoscopic effects.Comment: 4 pages, 2 figures email: [email protected]
    corecore